

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 1

MIR SUPER SDK - Version 1.0.0

Instruction For Use
History

Rev. Date Author Change/reason

00 2023.12.06 Arman Sarybayev Initial version

01 2024.02.09 Arman Sarybayev MDR_IFU_MIR SUPER SDK_PC_rev00 was renamed
as MDR_IFU_MIR SUPER SDK_rev01
Clause 1.1 - ıpdatedDevice Name, Model, and
Version
New clause - 7.1 Lifetime was added.
Paragraph 2 - was edited, new cybersecurity
instructions added
Paragraph 4, 5 - were edited and reference to
Annexes done
Chapter 8.4 -Label and Symbols was created
Chapter 7.2 technical specifications was edited,
requirements for API were added

Chapter 7.3 - Performance Characteristics updated
Following Annexes were created:

• Annex A – MIR SSDK iOS

• Annex B – MIR SSDK Windows

• Annex C – MIR SSDK Web (Cloud/API)

• Annex D – MIR SSDK MacOS

• Annex E – MIR SSDK Android
Information on e-IFU was added

Revision Trial

 Name: Date: Signature:

Prepared Arman Sarybayev 2024.02.09

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 2

Approved Alessio Segreto 2024.02.09

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 3

Manufacturer’s address:

 MIR Medical International Researc S.p.A.
Viale Luigi Schiavonetti 270
00173 Rome (ITALY)
Tel + 39 0622754777 Fax + 39 0622754785
Web site: www.spirometry.com
Email: mir@spirometry.com

MIR USA, Inc.
5462 S. Westridge Drive
New Berlin, WI 53151 - USA
Tel + 1 (262) 565 – 6797 Fax + 1 (262) 364 – 2030
Web site: www.spirometry.com Email:
mirusa@spirometry.com

MIR has a policy of continuous product development and improvement. MIR reserves the right to modify and update the

information in this User’s Manual as deemed necessary. Any suggestions and or comments regarding this product are

appreciated and may be sent via email to: mir@spirometry.com.

MIR accepts no responsibility for any loss or damage caused by the user of the device due to not follow of instructions

contained in this Manual.

Please note that due to printing limitations, the screenshots shown in this manual may differ from the display of the machine

and/or from the keyboard icons.

Copying this manual in whole or in part is strictly forbidden.

Electronic eIFU can be accessed through the following web page: https://ssdk.spirometry.com/1.0/ifu-labels#

Notice

You must report any serious incidents occurring in relation to the device to the manufacturer and the competent authority

of the Member State where the user and/or patient is established, in accordance with Regulation 2017/745.

mailto:mir@spirometry.com
https://ssdk.spirometry.com/1.0/ifu-labels

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 4

Contents

Contents 4

1. General Information 8

1.1. Device Name, Model, and Version ... 8

1.2. Purpose and Intended Use .. 8

1.3. Intended Users ... 8

1.4. Intended population .. 8

2. Safety Precautions and Warnings 9

3. Contraindications 9

4. Getting Started 11

Activation and Licensing ... 11

5. SW Integration 12

5.1. Correct Use of Features and Functions ... 12

5.2. Interpretation and Analysis of Output or Results ... 12

6. Maintenance 12

6.1. Routine Maintenance ... 12

6.2. Troubleshooting .. 13

7. Technical Specifications and Performance 13

7.1. Lifetime ... 13

7.2. Technical Specifications ... 13

7.3. Performance Characteristics .. 16

7.4. Validation and Testing Information ... 16

8. Legal and Regulatory Information 16

8.1. Compliance Statements ... 16

8.2. EU Declaration of Conformity ... 16

8.3. Post-Market Surveillance and Vigilance Procedures ... 17

8.4. Label and Symbols ... 18

8.4.1. Identification label and symbols 18

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 5

8.4.2. Used symbols 18

9. Manufacturer's Responsibility and Liability 18

9.1. Manufacturer's Commitment to Product Quality .. 19

9.2. Warranty Information .. 19

9.3. Limitations of Liability ... 19

9.4. Indemnification ... 19

9.5. Regulatory Compliance .. 19

9.6. Conclusion .. 19

9.7. List of MIR approved MD class I accessories .. 19

Annex A. Instruction for Use - SSDK iOS 20

Introduction .. 20

Prerequisites ... 20

Integration (How to implement?) ... 20

MIR SMART DEVICES 20

The SVC Test Guide 48

The FVC Plus Test Guide 53

SAMPLE DEMO APPLICATION 61

Additional Resources .. 65

Troubleshooting .. 66

Annex B. Instruction for Use - MIR SUPER SDK Windows 67

Introduction .. 67

Prerequisites ... 67

Integration (How to implement?) ... 67

Sample Demo Application 67

Integration into a Microsoft Visual Studio project 71

Main features... 77

Downloads the archive from a MIR device via USB or BLE (Bluetooth Low Energy) 78

Conduct the FVC test, generate the graph during the test and receive the results 81

Conduct the VC test, generate the graph during the test and receive the results 84

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 6

Load the tests from the .mir or .mirx file 85

Generate the .mirx file downloading the data (not interpreted) by the device 86

Perform the Firmware upgrade of the MIR device 88

Additional Resources .. 89

Troubleshooting .. 89

Annex C. Instruction for Use - MIR SUPER SDK WEB (CLOUD/API) 91

Introduction .. 91

Vocabulary .. 91

Authentication.. 92

Principles 92

Credentials 92

Permissions 92

Scopes 92

How to get a Bearer Token 92

Rate limiting... 95

Pagination ... 95

Errors ... 95

Content-Type... 96

Routes ... 97

Data Types 97

Imports 97

Convert 97

Interpretation 99

Oximeter Analysis 99

Predicted Values 99

Print 100

Troubleshooting .. 101

Annex D. Instruction for Use - MIR SUPER SDK MacOS 102

Introduction .. 102

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 7

Prerequisites ... 102

How to implement ... 103

Integration into a XCode project 103

Main features... 107

Connecting to a device 107

Conduct the FVC test, generate the graph during the test and receive the results 109

Conduct the VC test, generate the graph during the test and receive the results 110

Retrieving an archive and generating the .mirx file 111

Perform the Firmware upgrade of the MIR device 112

Additional Resources .. 113

Annex E. Instruction for Use - SSDK Android 114

Introduction .. 114

Prerequisites ... 114

Integration (How to implement?) ... 114

Spirobank Smart SDK Android Guide 114

Sample Demo Application 127

Additional Resources .. 129

Troubleshooting .. 130

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 8

1. General Information

1.1. Device Name, Model, and Version

The MIR SUPER SDK - Spirometry and Oximetry Software Development Kit (SDK) is a medical device designed to

provide comprehensive spirometry and oximetry functionalities. It is intended for use by healthcare professionals and

developers in the medical field.

Ref Description Version / configuration
UDI_DI

Packaging levels: 1

920230 MIR SUPER SDK 1.0.0 8052990322091

1.2. Purpose and Intended Use

The intended purpose of the MIR SUPER SDK is to serve as a black box software within a larger SUPER SDK

Accessories. Its main function is to receive raw medical data from external sources, such as medical devices or other

software applications, and process and analyze this data to generate treated medical information.

The MIR SUPER SDK is specifically designed to provide accurate and reliable results by applying advanced algorithms

and methodologies. It performs data cleansing, signal processing, configuration of associated devices and interpretation

to transform raw data into meaningful medical insights. The treated medical data includes parameters such as lung

function measurements and oximetry measurements.

1.3. Intended Users

The intended users of the MIR SUPER SDK are software developers, system integrators, and other professionals

involved in the development and integration of software applications in the healthcare domain. These individuals and

organizations may include:

Medical software developers: Developers who are creating software applications for medical purposes, such as

electronic health records (EHRs), telemedicine platforms, clinical decision support systems, or research tools.

System integrators: Professionals responsible for integrating various software components and systems within a

healthcare environment, including hospitals, clinics, or research institutions.

Healthcare IT professionals: IT personnel working in healthcare settings who are responsible for implementing,

configuring, and maintaining software solutions.

Medical device manufacturers: Companies involved in the production of medical devices that may require integration

with software applications to enhance their functionality and data analysis capabilities.

Research institutions: Academic institutions or organizations engaged in medical research and data analysis that require

reliable and accurate medical data for their studies.

It is important for the intended users to have a strong understanding of medical software development, data processing,

and compliance with regulatory requirements. They should also have the necessary technical skills to integrate the MIR

SUPER SDK into their software applications effectively.

1.4. Intended population

MIR SUPER SDK indirectly benefits patients and healthcare providers by enabling the delivery of accurate and treated

medical data, its primary focus is on facilitating the development and integration of software solutions rather than

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 9

targeting a specific population. Also, intended population depends on Non-medical SW and spirometry, oximetry tests

performed by patients.

2. Safety Precautions and Warnings

● Only qualified and trained software developers and healthcare professionals should have access to / and

use the MIR SUPER SDK.

● Before utilizing the MIR SUPER SDK, it is imperative to read and fully understand Instructions for Use (IFU)

to ensure proper software handling and usage.

● Unauthorized modification or alteration of the MIR SUPER SDK is strictly prohibited to maintain its intended

performance and safety.

● Ensure that any connected medical devices and software applications adhere to relevant safety standards

and regulations.

● For patients whose ability to perform spirometry or oximetry maneuvers is compromised or limited.

● In cases where patients cannot cooperate or follow the instructions required for proper use – do not use it.

● In environments where the specified operating conditions of the MIR SUPER SDK cannot be met – do not

use it.

● The MIR SUPER SDK is exclusively intended for the measurement of lung function parameters and

peripheral oxygen saturation. Any other uses are not recommended.

● Use only MIR-approved accessories and compatible software components to ensure accurate and reliable

results (those are mentioned in Paragraph 9 of this IFU).

● Regularly inspect the MIR SUPER SDK software for any signs of issues or abnormalities. If any problems

are detected, refrain from using the software and contact the manufacturer's technical support for

assistance.

● In case the MIR SUPER SDK does not perform as expected, cease using it and seek technical support from

the manufacturer.

● Cybersecurity: Access and use the MIR SUPER SDK software only from secure and authorized devices to

prevent unauthorized access and potential security breaches.

● Cybersecurity: Avoid sharing the software or any associated authentication credentials with unauthorized

individuals.

● Cybersecurity: Avoid using MIR SSDK on unknown and public Networks, at minimum those networks must

be protected with WPA2 password protection prototcol.

● Cybersecurity: Regularly update the software to the latest version provided by the manufacturer, including

any security patches or enhancements.

● Cybersecurity - Prohibition of Abuse: The user agrees not to engage in brute force activities, attempt to

bypass security measures, or use the API for purposes other than those explicitly authorized by MIR.

● GDPR: MIR SUPER SDK does not use and proceed any personal user information.

3. Contraindications
The MIR SUPER SDK, does not have direct contraindications for use. It is designed to assist in the development of

software applications for telespirometry and respiratory data analysis.

However, it's important to note that the software applications developed using the MIR SUPER SDK may have specific

contraindications depending on their intended use and the medical context in which they are deployed. These

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 10

contraindications would be determined by the software application developer or healthcare provider and may vary

depending on factors such as the patient population, medical condition, and specific clinical requirements.

Typically, contraindications for the use of software applications incorporating the MIR SUPER SDK would align with

contraindications for the underlying medical procedures or interventions being performed. For example, if the software

application is intended for use in patients with specific respiratory conditions, the contraindications may mirror the

contraindications associated with those conditions or with traditional spirometry testing.

It is essential for the software application developer and healthcare provider to clearly define and communicate the

contraindications associated with the specific software application, ensuring that it is used appropriately and in

accordance with relevant medical guidelines and regulations.

In case of MIR SUPER SDK Accessories:

MIR SUPER SDK ACCESSORIES, similar to spirometry, is a lung function testing SW, that measures the amount of air

a person can breathe in and out and how quickly they can exhale. As with spirometry, a detailed clinical history and

other tests suggested by a doctor should be considered to make an accurate diagnosis, and the test results,

interpretation, and treatment suggestions should be provided by a doctor.

It is important that the patient fully cooperates during the test to ensure accuracy. MIR SUPER SDK ACCESSORIES

also has relative contraindications, which could compromise the accuracy of the results or put the patient at risk.

Therefore, it is necessary to follow guidelines and recommendations regarding when and how to perform telespirometry

to minimize risks and obtain accurate results.

It is worth noting that telemedicine has expanded the possibilities of lung function testing and made it more accessible

to people who cannot attend a healthcare facility. With MIR SUPER SDK ACCESSORIES, the patient can perform the

test at home, and the results can be sent to a healthcare provider for interpretation and diagnosis. However, it is crucial

to ensure that the patient understands the test's requirements and procedures and to provide appropriate guidance

throughout the process to obtain reliable results.

Spirometry has relative contraindications, as reported in the 2019 update of the ATS/ERS guideline:

Due to increased myocardial demand or changes in blood pressure

- Acute myocardial infarction within 1 week

- Systemic hypotension or severe hypertension

- Significant atrial/ventricular arrhythmia

- Uncompensated heart failure

- Uncontrolled pulmonary hypertension

- Acute pulmonary heart

- Clinically unstable pulmonary embolism

- History of syncope related to forced expiration/cough

Due to increased intracranial/intraocular pressure

- Cerebral aneurysm

- Brain surgery within 4 weeks

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 11

- Recent concussion with persistent symptoms

- Eye surgery within 1 week

Due to increased sinus and middle ear pressure

- Sinus or middle ear surgery or infection within 1 week

Due to increased intrathoracic and intraabdominal pressure

- Presence of pneumothorax

- Thoracic surgery within 4 weeks

- Abdominal surgery within 4 weeks

- Pregnancy beyond term

Due to infection control problems

- Active or suspected transmissible respiratory or systemic infection, including tuberculosis

- Physical conditions predisposing to transmission of infection, such as haemoptysis, significant secretions or oral

lesions or oral bleeding.

It is important to note that spirometry testing is generally safe and complications are rare. However, potential risks should

always be weighed against the potential benefits of the test, and the test should be performed according to established

guidelines and recommendations.

4. Getting Started
To get started, please refer to the corresponding Annexes of each platform:

• Annex A – iOS

• Annex B – Windows

• Annex C –Web (Cloud/API)

• Annex D – MacOS

• Annex E - Android

Activation and Licensing

API Integration

The API requires having a developer account to obtain login credentials.

To create an account, the integrator must contact our technical team.

They will provide the integration with the necessary information to communicate with the API.

The API operates on a 'Pay As You Go' model.

Each API request incurs a specific cost.

At the end of each month, a weekly report is generated to bill the integrator only for what he has consumed.

Other integration

The use of SDKs is subject to a commercial offer and acceptance of a Non-Disclosure Agreement (NDA).

The integrator should reach out to our sales team to request a quote for obtaining the SDK.

Once the commercial offer is accepted, the integration will gain access to our developer platform.

On this platform, they can review and accept the NDA and proceed to download the SDK(s) they require.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 12

5. SW Integration
For integration please refer to the corresponding Annexes:

• Annex A – iOS

• Annex B – Windows

• Annex C –Web (Cloud/API)

• Annex D – MacOS

• Annex E - Android

5.1. Correct Use of Features and Functions

To utilize the features and functions of the MIR SUPER SDK correctly, follow these guidelines:

● Familiarize yourself with the SDK's user documentation, including this user manual and its annexes.

● Ensure that you have the necessary permissions and authorizations to access and utilize specific features

or functions of the SDK.

● Follow the recommended guidelines and best practices provided in the documentation to optimize the

performance and accuracy of the SDK.

● Use the provided APIs and interfaces to interact with the SDK programmatically, adhering to the defined

syntax and conventions.

5.2. Interpretation and Analysis of Output or Results

The MIR SUPER SDK generates output or results based on the performed spirometry and oximetry measurements. To

interpret and analyze these results accurately, consider the following:

● Consult the Annexes for detailed information on the parameters and measurements provided by the SDK.

● Understand the clinical significance and relevance of the specific measurements or parameters in the

context of the intended use and clinical condition.

● Compare the generated results with established reference values or guidelines provided by reputable

medical associations or regulatory bodies.

● Exercise professional judgment and clinical expertise when interpreting the output or results, taking into

account other relevant patient data and clinical observations.

6. Maintenance

6.1. Routine Maintenance

Application SSDKs

For each new version of an SDK, our developer portal sends a notification to various integrators, keeping them

informed of the updates. Each SDK includes documentation detailing the changes made and the compatible

versions for both devices and operating systems.

Web API

Communications sent to integrators when new API versions are released. A changelog is also generated for each

new version, and in some cases, a "Migration Guide" is provided for significant route changes.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 13

6.2. Troubleshooting
Follow these instructions to address and resolve issues effectively:

● Consult the troubleshooting section of the Annexes.

● Follow the recommended troubleshooting steps, which may involve checking connections, restarting the

software or hardware components, or contacting technical support if necessary.

● Document any troubleshooting steps taken and the outcomes, including any error messages or system

logs, for reference and future assistance.

● If the issue persists or cannot be resolved through troubleshooting, contact technical support or the

manufacturer for further assistance.

7. Technical Specifications and Performance
7.1. Lifetime

Software lifetime of MIR SUPER SDK can vary, and a priory decided minimum as 10 years of use because MD software

code cannot degradate, but there are limitations of this period such as:

● Decision of the manufacturer;

● Loss of essential performances depending on change of use framework (MacOS, iOS, Windows, Android).

● Decision of development languages used in MIR SSDK to stop further development.

● Decision of Regulatory Authority to stop distribution of the MD.

In case when MIR decides to stop distribution and use of the MDSW following steps are done:

● Advisory Notice sent to all distributors

● Users are informed via accessory MDSW that in pre-determined period MDSW will be checked from the

market.

● MIR SUPER SDK doesn’t save any sensible data

7.2. Technical Specifications

The MIR SUPER SDK offers multiple interfaces and connectivity options to facilitate smooth integration with various

medical devices and applications:

MIR SUPER SDK is a multiplatform MDSW that can be installed on physical devices. MIR SUPER SDK on web

is not installable and can be used only through REST-API. The Source code and programming part of WEB

configuration of MIR SUPER SDK is not resold and only used by third parties. Infrastructure for web is always

the same as for API of MIR.

API (Application Programming Interface): The SDK exposes a robust API that allows developers to interact with the

spirometry and oximetry functionalities programmatically. Through well-defined functions and methods, developers can

access measurement data, calibration settings, and other relevant parameters.

Connectivity Protocols: The MIR SUPER SDK supports standard connectivity protocols such as USB, Bluetooth This

enables seamless communication between the SDK-enabled medical device and the host system, facilitating data

transfer and real-time monitoring.

Data Export: The SDK allows developers to export measurement data and analysis results in various formats, including

CSV, XML, and JSON. This data export feature enhances interoperability and enables integration with electronic health

records (EHR) systems and other medical software.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 14

Platform Compatibility: The MIR SUPER SDK is designed to be compatible with multiple operating systems, including

Windows, Android, iOS and macOS, enabling developers to create cross-platform applications.

For API (Data Centers):

The SSDK Web is available as an API for clients.

Therefore, it requires the following prerequisites for usage

For Web:

● Internet Connection: 512kbps minimum.

● Access to HTTPS Port (443): Support for TLS 1.2 or higher for secure connections.

● Access Credentials: API keys or authentication tokens specific to the API.

● HTTP Client Software: Such as curl, Postman, or programming libraries that support HTTP(S) requests.

● Network access: - Authorization to send or receive payloads larger than 5 MB (without firewall / antivirus

or security tools limitations).

For Windows:

● Windows Seven (32 bit/64 bit), Windows 8 (32 bit/64 bit), Windows 10 (32 bit/64 bit), Windows 11 (32 bit/64

bit)

● RAM: 1 gigabyte (GB) for 32 bit or 2 GB for 64 bits.

● 1 gigahertz (GHz) or faster processor, with two or more cores in a 64-bit processor

● Display resolution XGA at 1024 × 768 pixels or higher

● 1Gb of free hard disk space

● Administrative privileges for the operating system

● USB port

● Support for Bluetooth Low Energy (Smart Bluetooth) to connect medical devices with Bluetooth Low Energy

connection.

For MacOS:

● Operating system 10.13

● 2 Gb RAM (recommended 4 Gb)

● 1Gb of free hard disk space

● Administrative privileges for the operating system

● USB port

● Support for Bluetooth Low Energy (Smart Bluetooth) to connect medical devices with Bluetooth Low Energy

connection.

For iOS:

● iOS version 11.0 minimum

● Bluetooth Permissions

● Compatible Hardware for BLE Support

● 1GB RAM

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 15

● Sufficient Free Storage Space

● Full Access to Internet Connection (with at least 1 Mbit/s)

For Android:

● Minimum Android 4.3 (Spirobank II Smart) or 5.0 (Spirobank Smart/SmartOne) version

● Compatible Hardware for BLE Support

● Bluetooth Permissions (BLUETOOTH, BLUETOOTH_ADMIN, and ACCESS_FINE_LOCATION (for

Android 6.0 and above)).

● 1GB RAM

● Free Space of the device

● Full access to internet Connection (with at least 1 Mbits/s)

Before proceeding and developing with the MIR SUPER SDK, ensure that your hardware computer system meets the

minimum requirements for proper functionality:

Windows Computer (for Windows and Android developments)

Minimum system requirements:

● OS: Windows 8/8.1/10/11 (64-bit)

● CPU: 2nd generation Intel CPU (Sandy Bridge) or newer, AMD CPU with support for a Windows Hypervisor

● Memory: 8 GB RAM

● Free storage: 8 GB

● Screen resolution: 1280 x 800

● Android Studio installed.

Recommended system requirements:

● OS: Windows 10/11 64-bit

● CPU: Intel Core i5-8400 3.0 GHz or better

● Memory: 16 GB RAM

● Free storage: 30 GB (SSD is strongly recommended)

● Screen resolution: 1920 x 1080

● Android Studio installed.

MacOS computers (For MacOS and iOS developments)

Minimum system requirements:

● OS: macOS 10.14 (Mojave) or newer

● CPU: ARM-based chips, or 2nd generation Intel Core or newer with support for Hypervisor.Framework

● Memory: 8 GB RAM

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 16

● Free storage: 8 GB

● Screen resolution: 1280 x 800

● Xcode installed.

Recommended specifications:

● OS: macOS 10.15 (Catalina)

● CPU: Intel Core i5-8400 3.0 GHz or better

● Memory: 8 GB RAM

● Free storage: 30 GB (SSD is strongly recommended)

● Screen resolution: 1920 x 1080

● Xcode installed.

7.3. Performance Characteristics

The MIR SUPER SDK exhibits the following performance characteristics:

• Accuracy: MIR SUPER SDK does perform calculation based on input data, so accuracy of its output data fully

rely on accuracy of input data, whether it comes from spirometers or any other data source.

• Precision: MIR SUPER SDK does perform calculation based on input data, so precision of its output data fully

rely on precision of input data, whether it comes from spirometers or any other data source.

• Measurement Range: The data received and given as output always is exact value. The range vary based on

input data given by spirometer or any other data source.

• Response Time: Range may vary between 1 ms up to 500ms in the WEB

7.4. Validation and Testing Information

The MIR SUPER SDK's performance claims are supported by relevant validation and testing information. This includes:

● Comparative Studies: Before releasing this version of MIR SUPER SDK the company performed clinical

evaluation that proves clinical safety and benefits of our product.

● Validation Testing: All modules of MIR SSDK were tested many times before being sent into production.

8. Legal and Regulatory Information

8.1. Compliance Statements

The MIR SUPER SDK is designed and developed in compliance with relevant standards and regulations to ensure its

safety and performance. The following compliance statements are provided:

Standards Compliance: The MIR SUPER SDK conforms to applicable international standards and guidelines, including

but not limited to IEC 62304, ISO 14971, and ISO 13485.

Regulatory Compliance: The MIR SUPER SDK complies with the requirements outlined in the Medical Device

Regulation (EU) 2017/745. It meets the essential requirements for medical devices specified in Annex I and has

undergone the necessary conformity assessment procedures.

8.2. EU Declaration of Conformity

The MIR SUPER SDK is accompanied by an EU Declaration of Conformity. This declaration serves as a formal

statement by the manufacturer, confirming that the device complies with the applicable legal requirements and

standards. It includes information such as the device's identification, manufacturer's details, and references to relevant

directives and regulations.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 17

8.3. Post-Market Surveillance and Vigilance Procedures

The manufacturer of the MIR SUPER SDK has established comprehensive post-market surveillance and vigilance

procedures to monitor the performance and safety of the device throughout its lifecycle. These procedures involve

systematic collection and analysis of data related to the device's performance, adverse events, and user feedback.

Post-Market Surveillance: The manufacturer regularly collects and reviews data from various sources, including

feedback from users, healthcare professionals, and adverse event reporting systems. This information is used to identify

and evaluate any potential issues or risks associated with the MIR SUPER SDK.

Vigilance Procedures: In compliance with regulatory requirements, the manufacturer maintains a robust vigilance system

to promptly identify, assess, and report any adverse events or incidents related to the MIR SUPER SDK. This includes

the timely reporting of serious incidents to the competent authorities and taking appropriate corrective actions, if

necessary.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 18

8.4. Label and Symbols

8.4.1. Identification label and symbols

8.4.2. Used symbols

SYMBOL DESCRIPTION

Manufacturer symbol

Indicates the manufacturer’s catalogue number so that the medical device can be
identified.

The symbol indicates the Unique Device Identification

The symbol indicates that the product is a medical device

This product is certified CE to conform to the Class IIa requirements of the European
Regulation (EU) 2017/745.

eIFU indicator

9. Manufacturer's Responsibility and Liability

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 19

9.1. Manufacturer's Commitment to Product Quality

 MIR is committed to delivering a high-quality MIR SUPER SDK that meets rigorous standards of safety and

performance.

9.2. Warranty Information

The MIR SUPER SDK is accompanied by a warranty that covers during normal use. We will repair or replace the

software as specified in the warranty documentation.

9.3. Limitations of Liability

MIR accepts no responsibility for loss, damage, or injury resulting from improper use of the MIR SUPER SDK. Users

are responsible for using the software correctly and interpreting results accurately.

9.4. Indemnification

Users agree to hold MIR harmless from any claims or liabilities arising from the use or misuse of the MIR SUPER SDK.

9.5. Regulatory Compliance

The MIR SUPER SDK complies with the requirements of the Medical Device Regulation (EU) 2017/745 and meets

essential requirements for medical devices.

9.6. Conclusion

MIR takes responsibility for the quality and compliance of the MIR SUPER SDK. Users should adhere to instructions

and understand their role in ensuring the proper use and interpretation of the software.

9.7. List of MIR approved MD class I accessories

MIR Spiro

MIR Spiro Expert

Pneumotel Web

Pneumotel Mobile

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 20

Annex A. Instruction for Use - SSDK iOS

Introduction

The purpose of this guide is to facilitate use of the tool SUPER SDK (Software Development Kit) for the rapid

development of applications running on iOS for monitoring and storing patients, archives of spirometry and oximetry

tests obtained through MIR Bluetooth devices.

MIR SSDK iOS allows you to quickly perform all the necessary operations to use Spirometry or Oximetry.

The SSDK is only compatible with Spirobank Smart, Smart One and Spirobank II Smart devices.

Prerequisites

Before you begin integrating the Android iOS into your application, make sure you have the following in place:

● iOS version 11.0 minimum

● Bluetooth Permissions

● Compatible Hardware for BLE Support

● 1GB RAM

● Sufficient Free Storage Space

● Full Access to Internet Connection (with at least 1 Mbit/s)

Integration (How to implement?)

MIR SMART DEVICES

Import the Framework

To import the framework inside your project just take the following steps: 1- Open Xcode and drag
the MirSmartDevice.framework bundle inside the project
2- Select the project in the TARGETS list. In the General tab click the add button (+) in the Embedded
Binaries section to add the MirSmartDevice.framework If in the section “Linked Frameworks and
Libraries” the MirSmartDevice.framework is listed twice, just remove one item using the remove
button (-) see the video tutorial at: vimeo

After that use the following instruction: #import < MirSmartDevice / MirSmartDevice.h>

Starting up a Device Manager

The first step to take to use this framework is to get a SOdeviceManager object.
The SODeviceManager has been implemented according to the singleton pattern so you would get
a same instance of it to be used in every context of your app.

The SOdeviceManager class also exposes the addDelegate and RemoveDelegate methods in order
to supports multiple delegates.

https://vimeo.com/user44650671/review/145853429/ed04df2d26

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 21

Initialise the Bluetooth

Before starting any bluetooth communication the bluetoothState method of the SODeviceManager
must be called. The bluetoothState method returns the CBCentralManagerState.

CBCentralManagerState tells you current bluetooth state and can assume values:
CBCentralManagerStateUnknown

CBCentralManagerStatePoweredOn CBCentralManagerStateUnsupported
CBCentralManagerStatePoweredOff

CBCentralManagerStateResetting CBCentralManagerStateUnauthorized

If the returned state is CBCentralManagerStateUnknown, you have to wait for SODeviceManager to
call its delegate method didUpdateBluetoothWithState with the updated state (before perform any
scan or connection). Otherwise call SODeviceManager initBluetooth method to get updated
bluetooth state through didUpdateBluetoothWithState method

If the returned state is different from CBCentralManagerStateUnknown, it means that the bluetooth
has already been initialised. (IMPORTANT!) In this case the didUpdateBluetoothWithState won’t be
called and you can use the returned CBCentralManagerState immediately to perform discovery,
connection

SODeviceManager also call the didUpdateBluetoothWithState method each time the bluetooth
status is modified (i.e.. the user switches off the bluetooth, the user switches it on again)

Perform a scan (discovery)

With an instance of deviceManager and after having initialised the Bluetooth, the client app may call
the startDiscovery method.
The discovery will retrieves all the Spirobank Smart devices in range. For each device discovered,
the deviceManager call its delegate method didDiscoverDeviceWithInfo.

Perform a “direct connection” to a Device with an instance of deviceManager and after having
initialised the Bluetooth, the client app may call the connect method passing the deviceId (UUID of
the device) even if the device has not been discovered during the current app life cycle.

When deviceManager calls its delegate method didConnectDevice it means that the device is
connected and all its services and characteristics have beer read.
If the same device is already connected the connect method will disconnect and reconnect the
device. if a different device is already connected, the connect method disconnect it before connecting
that new device.

Start a test in the “multitest mode” environment

IMPORTANT NOTE:

For the scope of this framework “test“ means a complete expiratory manoeuvre

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 22

The framework supports the “multutest mode”. This means that different kind of tests can be started.

At present the tests supported are:

Test supported Description From
version

Note

FVC test a forced expiratory
maneuver

PeakFlow/Fev
1

a forced expiratory
maneuver that lasts 1
second

 works only with
SpirobankSmart

with firmware >= 3.0

Flow
Monitoring Test

 2.8.0 works only with the new

SpirobankSmart Oxi

Oximetry test 2.8.0 works only with the new
SpirobankSmart Oxi

FVC PLUS
Test

a forced expiratory
and inspiratory
maneuver

2.9.0 works only with ENABLED
device: SpirobankSmart with
firmware >= 3.1 and Spirobank
OXI with firmware >= 1.0

SVC A slow expiratory and
inspiratory maneuver

3.0.0

works only with ENABLED
device: SpirobankSmart with
firmware >= 4.3 and Spirobank
OXI with firmware >= 4.3

Please note that if you are using this framework with spirobank smart device equipped with firmware
versions that do not support the multitest mode, the only valid command is that one to start the FVC
test. the command to start the PeakFlow/Fev1 test would be just ignored.

Only the Spirobank Smart with firmware version >= 1.7 (protocol 005) supports the multitest mode.

To require a specific test to be started by the device, the framework provides a new method with a

parameter. With an instance of SOdevice the

StartTestWithTestType:(SOTestType)testType method has to be invoked to

start one of the supported test type. Pass to this method the parameter

- SOTestType.TestFVC to start the FVC test

- SOTestType.TestPeakFlowFev1 to start the PeakFlow/Fev1 test

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 23

- SOTestType.TestFTmonitor to start the FVC test

- SOTestType.TestFVCPlus to start the FVC PLUS test

- SOTestType.TestSVC to start the SVC test

- SOTestType.TestMVV to start the MVV test (only Spirobank II >= 5.3)

-

The method StartTest is deprecated from version 2.0 of the framework but is still working for the

backward compatibility. This method starts the FVC test which is the “default” test for this framework

(FVC in case of Spirobank Smart/ Spierobank Oxi)

Starting a test with a customized “End of Test timeout” (from version 2.3.0) Turbine Type

(frome version 2.6.0) Ambient Temperature (for version 3.0.0)

Overloads of the “start test” method has been implemented by this framework.

In version 2.3 a new argument endOfTestTimeout was added in order to set the End of Test timeout

(see below: End Of Test Timeout). The new method (available from version 2.3 of this framework

and from the version 2.4 of SpirobankSmart internal software) is the following:

startTestWithTestType:(SOTestType)testType endOfTestTimeout:(Byte) timeoutInSeconds;

This method is invoked to start the test specified by the parameter "testType" with the EndOfTest

timeout specified by the parameter "timeoutInSeconds". The EOT timeout is the number of seconds

after which the test is automatically ended by the spirometer (if the user was not been blowing at

all since the test started).

The valid range for the "timeout" parameter is 15s - 120s.

If a value < 15 is passed, the spirometer sets the timeout to 15s.

If a value > 120 is passed, the spirometer sets the timeout to 120s. Whatever value is passed to a

SpirobankSmart with internal software < 2.4, the default value of 15 seconds will be applied EXCEPT

FOR OXIMETRY where this parameter will be ignored

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 24

We recommend to avoid any unnecessary increasing of the timeout to

preserve the Mir Smart Device’s battery life

Multiturbine management

In the version 2.6.0 a new argument turbine was added in order to specify the turbine

type (reusable or disposable) is in use on the device.

(void)startTestWithTestType:(SOTestType)testType endOfTestTimeout:(Byte)

timeoutInSeconds turbineType:(SOTurbineType)turbine

The turbine type can be reusable (default) or disposable. The client app should ask

the user which turbine is he/she using (Orange one = reusable or White one =

disposable). It should be a good idea to show to the user the pictures of the 2 turbines

to make the selection easier for him/her.

This instruction is supported only by spirobankSmart equipped with firmware

>

=

2.

7

This instruction does affects the reading made by the device because different

algorithms are used for each turbine type.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 25

This parameters is ignored in case of OXIMETRY test where this parameter

will be ignored

StartTest handshaking When the client app sends used, and whatever is the kind of test

requested) the framework, from version

2.6.0 sends a new delegate method: - (

*)soDevice; This method is invoked when the device is a

measurements. For this reason, this new method is the right place to raise a message that

the user can START EXHALING (blowing).

the StartTest method (whatever is the

overload

void)
soDeviceDidStartTest:(SO
Device

ctually READY to take

A new argument ambientTemperatureCelsius was added for the compliance to the ATS 2019

guidelines.

If passed this parameter is used by the device to calculate the BTPS. If not passed the device

calculates the BTPS at the “default” temperature of 25°c (77° F)

During the test the SOdevice object calls its delegate method didUpdateFlowValue:isFirstPackage

to pass the measured flow values in case of FVC or PEF-FEV1 test or FVCPlus test

didUpdateFlowTimeMonitoringValue to pass the measured flow values in case of Flow Time

Monitoring test

didUpdateVcVolumeTimePoint to pass the measured volume and time values in case of SVC test

(FVCPlus test) didReceiveEndOfForcedExpirationIndicator to notify that one

EOFE criteria has been achieved during the FVCPlus test

(SVC test) didPerformVentilatoryProfile to notify the END of the tidal breathing phase and the

beginning of the SVC test phase (deep and slow expiration / inspiration) during the SVC test

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 26

didUpdateOximetryRealTimeValuesWithSignal:spO2Value:bpmValue:warning:

isDataValid to pass the measured oximetry values in case of oximetry test

didUpdateOximetryPletismographicValue to pass the point values of the plethysmographic curve

in case of oximetry test heartBeatDetected to pass the detection of an heart beat in case of

oximetry test

For each flow point received the current volume can be get by:

• (expiring phase) adding the volumeStep (SODevice attribute) to the current volume

Current Volume += volumeStep mnjhu

• (inspiring phase) subtracting the volumeStep (SODevice attribute) to the current volume

Current Volume -= volumeStep

At the end of FVC or PEF-FEV1 test , SOdevice object usually calls its delegate method to provide

the test’s results: soDevice:didUPdateResults:(SOResults *)results

At the end of FVCPlus test , SOdevice object calls

soDevice:didUPdateFvcPlusResults:(SOResultsFvcPlus *)results;

At the end of SVC test , SOdevice object calls soDevice:didUPdateVcResults:(SOResultsVc *)results;

If a parameter is not provided by the performed test type, it is passed with value = -1 by the Results

object.

Note that if the test is performed very bad (too poor information detected by the device sensors)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 27

the device is not able to calculate the results and therefore the delegate method

soDevice:didUPdateResults IS NOT CALLED AT ALL. the Results provided (by the different test

types) are the following

PARAMETER PROVIDED BY

pef_cLs (Peakflow cL sec) FVC-PEAKFLOW/FEV1

fev1_cL (Forced Exp Vol at 1th sec in cL) FVC-PEAKFLOW/FEV1

quality (acceptability calculation) FVC-PEAKFLOW/FEV1

fvc_cL (Forced Exp Capacity in cL) FVC

fev1_fvc_pcnt (Fev1% in percentage) FVC

fev6_cL (Forced Exp Volume at 6th sec in cL) FVC

fef2575_cLs (Max mid-expiratory flow in cL sec) FVC

eVol_mL (Extrapolated volume in mL) PEAKFLOW/FEV1

pefTime_sec (time to reach Peakfow in sec) PEAKFLOW/FEV1

FVC PLUS TEST

pef_Ls (Exp Peakflow L sec)

fev1_L (Forced Exp Vol at 1st sec in L)

quality (acceptability calculation)

fvc_L (Forced Exp Capacity in L)

fev1_fvc_pcnt (Fev1% in percentage)

fev6_L (Forced Exp Volume at 6th sec in L)

fef2575_Ls (Max mid-expiratory flow in L sec)

eVol_mL (Extrapolated volume in mL)

pefTime_ms (time to reach Peakfow in milliseconds)

fef75_L (Max mid-expiratory flow in L sec)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 28

fet_cs (flow expiratory time in sec * 100)

fef25_Ls (Max mid-expiratory flow in L sec)

fef50_Ls (Max mid-expiratory flow in L sec)

fivc_L (Forced Insp Capacity in L)

fiv1_L (Forced Insp Vol at 1st sec in L)

pif_Ls (Insp Peakflow L sec)

fev3_L (Forced Insp Vol at 3rd sec in L)

fev05_L (Forced Insp Vol at 0.5th sec in L)

fev075_L (Forced Insp Vol at 0.75th sec in L)

fev2_L (Forced Insp Vol at 2nd sec in L)

fef7585_Ls (Max mid-expiratory flow in L sec)

fif25_Ls (Max mid-expiratory flow in L sec)

fif50_Ls (Max mid-expiratory flow in L sec)

fif75_Ls (Max mid-expiratory flow in L sec)

fev1_fev6_perc

fev6_fvc_perc

fiv1_fivc_perc

fev3_fvc_perc

fev05_fvc_perc

fev075_fvc_perc fev2_fvc_perc

hesitationTime_s

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 29

SVC TEST

PARAMETER

evc_L (Exp Vital Capacity in L) ivc_L (Insp Vital Capacity in L) ic_L (Inspiratory Capacity in L)

 slowExpInspTime_s (exp or insp time)

_!

At the end of Oximetry test, SOdevice object usually calls its delegate method to provide the test’s

results:

soDevice:didUPdateOximetryResults:(SOResultsOximetry *)oximetryResults

PARAMETER PROVIDED

BY

spO2Mean (%) OXIMETRY

spO2Max (%) OXIMETRY

spO2Min (%) OXIMETRY

HeartRateMean (bpm) OXIMETRY

HeaxrtRateMax (bpm) OXIMETRY

HeartRateMin (bpm) OXIMETRY

spo2Points (Array) OXIMETRY

heartRatePoints (Array) OXIMETRY

MVV TEST

At the end of Mvv test, SOdevice object usually calls its delegate method to provide the test’s results:

soDevice didUPdateMvvResults:(SOResultsMvv *)results;

PARAMETER PROVIDED BY

MVV_Lm MVV

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 30

How the test is stopped/restarted in the “multitest mode” environment

The test are stopped in two ways:

A.when the stopTest method is invoked

B.automatically, when the device/framework detects the

EOT (End Of Test) criteria. See above the chapter End Of Test Criteria.

In the SVC test when the test is stopped (automatically or not) the device always quits from “test

mode“ and a new command “startTest” needs to be sent to start a new test the sequence of the

delegate methods called during an SCV test are the following:

soDevice:didUpdateVcVolumeTimePoint soDevice:didStopTest (always called, even if the test was

stopped by the invocation of the stopTest method) soDevice:didUpdateVcResults (which might

not be called in case there aren’t the conditions to return the Results)

In the FVC Plus test when the test is stopped (automatically or not) the device always quits from

“test mode“ and a new command “startTest” needs to be sent to start a new test the sequence of

the delegate methods called during an FCV test are the following:

soDevice:didUpdateFlowValue

soDevice:didStopTest (always called, even if the test was stopped by the invocation of the

stopTest method) soDevice:didUpdateFvcPlusResults (which might not be called in case there

aren’t the conditions to return the Results)

Note that the FVC Plus test automatically quits after 60 seconds

In the FVC test when the test is stopped (automatically or not) the device always quits from “test

mode“ and a new command “startTest” needs to be sent to start a new test the sequence of the

delegate methods called during an FCV test are the following:

soDevice:didUpdateFlowValue

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 31

soDevice:didStopTest (always called, even if the test was stopped by the invocation of the stopTest

method) soDevice:didUpdateResults (which might not be called in case there aren’t the conditions

to return the Results)

In the Peakflow/Fev1 test

There is a different behavior depending how the stop the test has occurred.

1) when the test is stopped:

• by the invocation of the stopTest method

• by the expiration of the timeouts spirobanksmart quits from the “test mode” and a new

command “startTest” needs to be sent to start a new test.

In this case the sequence of the delegate methods called are the following:

soDevice:didUpdateFlowValue

soDevice:didUpdateResults (which might not be called in case there aren’t the conditions to return

the Results)

soDevice:didStopTest (always called, even if the test was stopped by the invocation of the stopTest

method)

IMPORTANT NOTE:

It is strongly recommended to avoid placing the call to the StartTest method into the

soDevice:didStopTest delegate method for two main reason: Because this might activate a loop with

a negative impact on the battery life and because the test stopping and restarting would take place

almost simultaneously.

2) when the test is stopped:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 32

• because the device has automatically detected the end of the expiratory manoeuvre (See above

the chapter End Of Test Criteria)

spirobanksmart stops the test but it DOES NOT quit from the “test mode” and RESTART

AUTOMATICALLY a new test (no need to call the startTest method to start a new test)

In this case the sequence of the delegate methods called are the following:

soDevice:didUpdateFlowValue

soDevice:didUpdateResults (which might not be called in case there aren’t the conditions to return

the Results) soDevice:didRestartTest (always called. It means that a new test is started, the user can

blow)

This behavior, called AutomaticTestRestarting, has been designed for the Peakflow test where

the patient can perform the 3 tests, recommended for a valid session, without any rest interval

because of the short duration of each manoeuvre (1 second).

Thought the AutomaticTestRestarting approach is recommended, the developer can decide to

handle the Peakflow/Fev1 test using the Start&Stop approach: with this approach the developer

should invoke the stopTest method as soon as the delegate method soDevice:didRestartTest is

called and then use the StartTestWithTestType method to start a new test.

See Best Practices section for more detailed info.

In the Flow Time Monitoring test when the test is stopped (automatically or not) the device always

quits from “test mode“ and a new command “startTest” needs to be sent to start a new test the

sequence of the delegate methods called during an Flow Time Monitoring test are the following:

soDevice: didUpdateFlowTimeMonitoringValue

soDevice:didStopTest (always called, even if the test was stopped by the invocation of the stopTest

method)

NO RESULTS ARE SENT WITH THIS KIND OF TEST

In the OXIMETRY test when the test is stopped the device always quits from “test mode“ and a

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 33

new command “startTest” needs to be sent to start a new test the sequence of the delegate

methods called during an FCV test are the following:

didUpdateOximetryRealTimeValuesWithSignal:spO2Value:bpmValue:warning:

isDataValid didUpdateOximetryPletismographicValue heartBeatDetected

soDevice:didUpdateResults (which might not be called in case there aren’t the conditions to return

the Results)

soDevice:didStopTest (always called, even if the test was stopped by the invocation of the stopTest

method)

Real Time Animation in the PEAKFLOW-FEV1 test the SOPatient class can be instantiated to

get some important information during the test to be used to display the animated feed back

of the user’s expiration.

The model of animation proposed by SOPatient, is based on the concept of the Predicted Area

(calculated from user’s personal data). Two graphic objects have to move inside the Predicted Area:

One graphic object (target object) is moved by the user’s expired (and inspired in the FVC Plus test)

volume with a preset speed (based on the predicted flow). The other graphic object (user object) is

moved according to the user's expired volume (and inspired in the FVC Plus test) and at the speed

of the user’s flow (measured flow).

The Predicted Area is based on patient’s FVC and PeakFlow in case of FVC test and FVC Plus test. In

case of PeakFlow/Fev1 test, instead, the Predicted Area is based on patient’s FEV1 and the PeakFlow.

The method actualPercentageOfTargetWithFlow:volumeStep:isFirstPackage: retrieves the

percentage of the Predicted Area which has been covered by the

“user object”

This percentage value can be asked to SOPatient for each flow retrieved by the method

soDevice:didUpdateFlowValue:isFirstPackage:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 34

set the difficulty of the test in percentage (from 20 to 200). If the value passed is < 100 is esier to

reach the target, if it is > 100 is harder. 100 is normal. if you don't know the value to set, pass 100

to this parameter

The method predictedPercentageOfTargetWithFlow:volumeStep:isFirstPackage: retrieves the

percentage of the Predicted “AREA” which has been covered by the “target object”

This percentage value can be asked to SOPatient for each flow retrieved by the method

soDevice:didUpdateFlowValue:isFirstPackage:

Difficulty Level

Before starting the test, a difficulty level can be set to make easier or harder for the “user object” to

reach the “target object”. Use the SOPatient property difficultyLevel.

The difficulty level has only a psychological effect on the user (i.e. avoid his / her frustration when

the user object can never reach the speed of the target object): It does not affect in any way the

results of the manoeuvre (Peak flow or FEV1 values).

The difficulty level is expressed in percentage and can be set with values from 20 to 200 (any values

out of range will be set to the nearest threshold).

= 100 -> expected difficulty to reach the target

< 100 -> easier than normal to reach the target

> 100 -> harder than normal to reach target

Real Time Animation in the FVC-FVCPLUS test

During the FVC and the FVC Plus test the Flow Volume loop can be plotted. The flow points are

provided by the delegate method soDevice:didUpdateFlowValue:isFirstPackage:

These flow points are provided at a constant volume step (volumeStep). During the expiration,

for each flow point the current volume increase of 1 volumeStep

During the inspiration (FVC Plus test only), for each flow point the current volume decrease of 1

volumeStep

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 35

Real Time Animation in the Flow Time Monitoring test

During Flow Time Monitoring test the Flow Time loop (expired and inspired points) can be plotted.

The Flow points are provided (by the delegate method soDevice:

didUpdateFlowTimeMonitoringValue) at a constant time of 10 milliseconds. The value of flow is an

int type that is positive for expiration and negative for expiration. It is provided in cL/s.

Real Time Animation in the Oximetry test

During an Oximetry test the following curves can be plotted:

- the plethysmographic curve, using didUpdateOximetryPletismographicValue

(int) ppmSignal

- the sPO2 curve and/or the Pulse Rate curve, using

soDevice:(SODevice *)soDevice didUpdateOximetryRealTimeValuesWithSignal:(int)signal

 spO2Value:(int)spO2

 bpmValue:(int)bpm

 warning:(SOOximetryWarnings)warning

 isDataValid:(BOOL)isdatavalid;

Value range is 70 —> 99 bpm

Value range is 30 —> 300

the above method can also be used for displaying other info to the user such as signal (range 0 to

8)

warnings (SOOximetryWarnings)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 36

The following values can be assigned to the parameter warning

 NoWarning

 DefectiveSensor

 BatteryLow

 NoFinger

 PulseSearching

 PulseSearchingTooLong

 LossOfPulse

 LowSignalQuality

 LowPerfusion

 ArtifactDetected

CAUTION: when the warning parameter = BatteryLow, the device will stop the test and the delegate method

SODeviceDidStopTest is called.

the parameter IsValidData specifies if the value of SpO2 (spO2Value) and

Pulse Rate (bpmValue) are valid.

When IsValidData = NO, those values should be displayed with the symbol “— “ and the test duration

timer (if used) should be paused.

Usually when warning value is different from NoWarning, isDataValid =NO.

This does not happen when warning = LowPerfusion: in that case IsValidData

= YES

the delegate method heartBeatDetected can be used to perform a beat if an icon with a beating

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 37

heart is displayed

Real Time Animation in the SVC TEST

The methods provided by the SOPatient class during the FVC real time test in order to build an

animated feedback (actualPercentageOfTargetWithFlow and predictedPercentageOfTargetWithFlow)

cannot be used for the SVC test because they are based on flow.

Quality report - Acceptability (ONLY FOR FVC, FVC PLUS AND PEAKFLOW-FEV1

TEST)

 Device ATS 2019

• Boot ID = SE And PROTOCOL >= 11 (SPIROBANK OXI)
• Boot ID = SM And PROTOCOL >= 9 (SPIROBANK SMART)
• Boot ID = SX And PROTOCOL >= 10 (SMARTONE OXI)
• Boot ID = SO And PROTOCOL >= 8 (SMARTONE)
• Boot ID = BK And PROTOCOL >= 00 (SPIROBANK II)

 • Boot ID = BK And PROTOCOL >= 13 (SPIROBANK II)

Device ATS 2015

• Boot ID = SE And PROTOCOL < 11 (SPIROBANK OXI)
• Boot ID = SM And PROTOCOL < 9 (SPIROBANK SMART)
• Boot ID = SX And PROTOCOL < 10 (SMARTONE OXI)
• Boot ID = SO And PROTOCOL < 8 (SMARTONE)
• Boot ID = BN And PROTOCOL = 255 (SPIROBANK II)

The SOPatient class provides information about the acceptability of each single manoeuvre in terms

of quality

Starting from the framework version 3.0.0 the information about the Acceptability are provided for

both ATS2015 and ATS2019 standards, depending on the standard supported by the connected mir

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 38

device.

ATS Satandard supported by mir devices

Device ATS 2019

• Boot ID = SE And PROTOCOL >= 11 (SPIROBANK OXI)
• Boot ID = SM And PROTOCOL >= 9 (SPIROBANK SMART)
• Boot ID = SX And PROTOCOL >= 10 (SMARTONE OXI)
• Boot ID = SO And PROTOCOL >= 8 (SMARTONE)
• Boot ID = BK And PROTOCOL >= 00 (SPIROBANK II)

 • Boot ID = BK And PROTOCOL >= 13 (SPIROBANK II)

Device ATS 2015

• Boot ID = SE And PROTOCOL < 11 (SPIROBANK OXI)
• Boot ID = SM And PROTOCOL < 9 (SPIROBANK SMART)
• Boot ID = SX And PROTOCOL < 10 (SMARTONE OXI)
• Boot ID = SO And PROTOCOL < 8 (SMARTONE)
• Boot ID = BN And PROTOCOL = 255 (SPIROBANK II)

In the frameworks >= 3.0.0 the methods QualityMessageForResults

The new methods to calculate the Acceptability are:

For FVC and peakflow-fev1 test

-(SOQualityReport *_Nullable) QualityReportForResults:(SOResults *_Nonnull) results;

For FVC Plus test

-(SOQualityReport *_Nullable) QualityReportForResultsFvcPlus:(SOResultsFvcPlus

*_Nonnull) results;

Or the overload version

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 39

For FVC and peakflow-fev1 test

-(SOQualityReport *_Nullable) QualityReportForResults:(SOResults *_Nonnull) results

WithSessionLargestFvcValue_L: (float)bestSessionFvc_L; -(SOQualityReport *_Nullable)

For FVC Plus test

-(SOQualityReport *_Nullable) QualityReportForResultsFvcPlus:(SOResultsFvcPlus *_Nonnull)results

WithSessionLargestFvcValue_L: (float) bestSessionFvc_L;

The object retrieved by the above functions, SOQualityReport, includes the following info:

standardUsedByCurrentDevice
The standard in use by the

device

trialAcceptability
Calculated only if the

standard in use by the

device is = ATS2015

fvcAcceptability
Calculated only if the

standard in use by the

device is = ATS2019

fev1Acceptability
Calculated only if the

standard in use by the

device is = ATS2019

fev075Acceptability
Calculated only if the

standard in use by the

device is = ATS2019

QualityIndications

SOQualityMessage

SOQualityInstruction

in the FVC/FVC Plus maneuver the SOQualityMessage provided are:

SOQualityMessageDontEsitate

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 40

SOQualityMessageBlowOutFaster

SOQualityMessageBlowOutLonger

SOQualityMessageAbruptEnd

SOQualityMessageGoodBlow

SOQualityMessageDontStartTooEarly SOQualityMessageAvoidCoughing

(the following provided only if the device in use supports ATS2019 standard)

SOQualityMessageHesitationAtMaxVolume

SOQualityMessageSlowFilling

SOQualityMessageLowFinalInspiration

SOQualityMessageIncompleteInspirationPriorToFvc

SOQualityMessageLowForcedExpirationVolume

in the PeakFlow/Fev1 maneuver the following messages are provided:

SOQualityMessageDontEsitate

SOQualityMessageBlowOutFaster

SOQualityMessageBlowOutLonger (*) SOQualityMessageGoodBlow

SOQualityMessageDontStartTooEarly

SOQualityMessageAvoidCoughing

(*) The message “BlowOutLonger” is available, in the PeakFlow/Fev1 test, only if you use this

FRAMEWORK with a SpirobankSmart equipped with internal software version >= 2.3

Get the FVC curve points at the highest resolution

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 41

From SDK version 3.1.0, when connected to a Spirobank smart supporting this feature (firmware >=

4.6) , you can get the expired only curve points of the last FVC PLUS test performed at the resolution

of 100Hz (one point each 10 milliseconds).

From the SDK version 4.1.0 when connected to a Spirobank smart supporting this feature (firmware

>= 4.7), you can get the expired and the inspired curve points of the last FVC PLUS test

Note that the high resolution curve points ARE NOT automatically retrieved with the

SOResultsFvcPlus object passed by the didUPdateFvcPlusResults delegate method .

To get the high resolution expired curve points the method

getHighResolutionCurveForLastSpirometryTest of the SODevice object must be called. It must be called

AFTER receiving the didUPdateFvcPlusResults call back

To get the high resolution expired and inspired curve points the method

getHighResolutionCurveForLastSpirometryTestWithInspiration of the SODevice object must be called. It

must be called AFTER receiving the didUPdateFvcPlusResults call back

This last method (withInspiration) is slower than the previous method (only expiration) so if

inspiration points are not needed it is recommended to call the previous one (only expiration)

When one of the above-mentioned methods is called (only expiration or expiration and inspiration)

the high resolution curve points are provided by the delegate method

didUpdateHighResolutionCurvePoints (SODevice class)

The above the delegate method retrieves a collection of CurvePoint objects having, each one, as a

properties Flow, Volume and Time

Update device internal software

CAUTION: THIS FUNCTION ONLY ALLOWS THE FIRMWARE UPDATE

FOR THE FOLLOWING DEVICES;

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 42

device

supported

firmware

supported

Smart One < 4.0

Spirobank

Smart
< 4.0

With an instance of SoDevice call the method startSoftwareUpdate: (NSData *) newSoftware. The

newSoftware argument is a .bin file provided by MIR.

During the update the SODevice object notifies its subscribers by calling the delegate method

soDevice:(SODevice *)soDevice didReceiveSoftwareUpdateProgress:(NSUInteger)progress

withStatus:

(UpdateStatus)status error:(NSString *)description; soDevice

soDevice is the device providing this information.

progress is the percentage value of the update progress (0 to 100) status is the update status code

(UpdateIdle, UpdateInProgress, UpdateError, UpdateComplete)

description is the description of the cause of the failure in case of error. If no error has occurred it

is = nil. The error descriptions can be:

@"Update start timed out" when the time it takes to start the firmware loading procedure exceeds

the timeout @"Communication timed out"

- when the time it takes to load one of the “packets” (of firmware) exceeds the timeout

- this message can also appear after 100% if the firmware doesn’t match

the device.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 43

Run the Project

ATTENTION: the projects with the MirSmartDevice.framework embedded can only be compiled and

run in a iOS device. Simulator is not supported.

Best Practices

The best practice to handle Mir Spirometer and avoid instability and malfunctioning is the following:

PEAK-FLOW / FEV1 TEST (AutomaticTestRestarting approach)

1. Get an instance of the SODeviceManager Class

2. Perform a scan and connect OR perform a “direct connection” to a spirometer

3. Start the test (user must start blowing within the EOT timeout: default =15 sec)

4. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method soDeviceDidStartTest

soDeviceDidStopTest delegate method is called if user doesn’t blow within the EOT timeout (in this

case give to the user the ability to restart the test manually)

It is strongly NOT recommended to call the Start test on the soDeviceDidStopTest delegate method

as a workaround to contrast the End Of Test timeout effect. Instead call the start test only when the

patient is ready to blow or increase the End of Test Timeout (see above: Starting a test with a

customized “End of Test timeout”)

5. Use didUpdateFlowValue delegate method to show the animated feedback

(also in connection with the SOPatient class’s dedicated methods)

6. Use didUpdateResults to show the result (this method might not be called if the device was not

able to calculate the results)

7. use didRestartTest delegate method to detect that the current expiratory manoeuvre is ended

and advice the user to start blowing and perform a new expiratory manoeuvre

8. Repeat from step 4 (3 times at least)

9. send the stopTest command to quit from test and wait for the didStopTest delegate method to

be called.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 44

It is strongly NOT recommended to disconnect the device

(SODeviceManager:disconnect) at the end of each session or test. The bluetooth disconnection of

the device should be called only if no more spirometry test need to be performed in a short time

(less than 1 minute).

Even better is to disconnect when the app became inactive

PEAK-FLOW / FEV1 TEST (Start&Stop approach)

1. Get an instance of the SODeviceManager Class

2. Perform a scan an connect OR perform a “direct connection” to a spirometer

3. Start the test (user must start blowing within the EOT timeout: default = 15 sec)

soDeviceDidStopTest delegate method is called if user doesn’t blow within the

EOT timeout -default = 15 sec-

The app should give to the user the ability to restart the test manually whenever this timeout expires

It is strongly NOT recommended to call the Start test on the soDeviceDidStopTest delegate method

as a workaround to contrast the End Of Test timeout effect. Instead call the start test only when the

patient is ready to blow or increase the End of Test Timeout (see above: Starting a test with a

customized “End of Test timeout”)

4. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method soDeviceDidStartTest

5. Use didUpdateFlowValue delegate method to show the animated feedback

(also in connection with the SOPatient class’s dedicated methods)

6. Use didUpdateResults to show the result (this method might not be called if the device was not

able to calculate the results)

7. use didRestartTest delegate method to detect that the current expiratory manoeuvre is ended

and use the stopTest command to quit from test (then wait for the didStopTest delegate method

to be called).

8. Repeat from step 3 (3 times at least)

It is strongly NOT recommended to disconnect the device

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 45

(SODeviceManager:disconnect) at the end of each session or test. The bluetooth disconnection of

the device should be called only if no more spirometry test need to be performed in a short time

(less than 1 minute).

Even better is to disconnect when the app became inactive

FVC / FVC PLUS TEST

1. Get an instance of the SODeviceManager Class

2. Perform a scan an connect OR perform a “direct connection” to a spirometer

3. Start the test (user must start blowing within the EOT timeout: default 15 sec)

soDeviceDidStopTest delegate method is called if user doesn’t blow within the EOT timeout (give

to the user the ability to restart test manually) It is strongly NOT recommended to call the Start

test on the soDeviceDidStopTest delegate method as a workaround to contrast the End Of Test

timeout effect. Instead call the start test only when the patient is ready to blow or increase the

End of Test Timeout (see above: Starting a test with a customized “End of Test timeout”)

4. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method soDeviceDidStartTest

5. Use didUpdateFlowValue delegate method to show the animated feedback

(also in connection with the SOPatient class’s dedicated methods)

6. If the receivedEndOfForcedExpirationIndicator delegate method is called, the user can be advised to stop

blowing, since a plateau or the end of expiratory time was reached

7. Use didUpdateResults / didUpdateFvcPlusResults to show the result (this method might not be

called if the device was not able to calculate the results)

It is strongly NOT recommended to disconnect the device

(SODeviceManager:disconnect) at the end of each session or test. The bluetooth disconnection of

the device should be called only if no more spirometry test need to be performed in a short time

(less than 1 minute). Even better is to disconnect when the app became inactive

SVC TEST

(Spirobank Smart only from firmware version 4.3+)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 46

a. Get an instance of the SODeviceManager Class

b. Perform a scan an connect OR perform a “direct connection” to a spirometer

c. Start the test (user must start blowing within the EOT timeout: default 15 sec)

d. soDeviceDidStopTest delegate method is called if user doesn’t blow within the EOT

timeout (give to the user the ability to restart test manually)

It is strongly NOT recommended to call the Start test on the soDeviceDidStopTest delegate

method as a workaround to contrast the End Of Test timeout effect. Instead call the start test

only when the patient is ready to blow or increase the End of Test Timeout (see above:

Starting a test with a customized “End of Test timeout”)

e. Use a visual feedback to prevent that user start blowing before the app has received

the delegate method soDeviceDidStartTest

f. Use didUpdateVcVolumeTimePoint delegate method to show the animated feedback

g. Before the ventilatoryProfilePerformed delegate method is called prompt the user to

breath normally (tidal breathing / ventilatory profile)

h. After the ventilatoryProfilePerformed delegate method is called, (patient’s ventilatory

profile is acquired) prompt the user to start a deep and slow insp/exp maneuver.

i. Use ResultsVcUpdated to show the result (this method might not be called if the device was

not able to calculate the results)

j. soDeviceDidStopTest delegate method is called: the test is over

It is strongly NOT recommended to disconnect the device (DeviceManager disconnect) at the

end of each session or test. The bluetooth disconnection of the device should be called only if

no more spirometry test need to be performed in a short time (less than 1 minute). Even better

is to disconnect when the app became inactive

End Of Test Criteria

During a spirometry manoeuvre the End of Test is detected by the spirometer

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 47

(and thus propagated by the FRAMEWORK) according to the following criteria:

FVC TEST

The FVC manoeuvre AUTOMATICALLY ends:

1. when an expiratory PLATEAU has been reached. The expiratory plateau is detected, by the

spirobankSmart, when no significant volumes (<

20mL) have been measured within a timeframe of 3 seconds

2. when a significant inhaled volume is detected AND an exhalation has been performed.

3. when a timeout is expired. A timeout expires in the following conditions:

a. when the user has never been blowing for n seconds since the test was started. The

value of n can be set by the app developer from 15 (which is the default) to 120

seconds

b. when the user stop blowing for 3 sec

c. when the user keep on blowing for 60 seconds and no plateau has been reached

FVC PLUS TEST

The FVC PLUS maneuver AUTOMATICALLY ends:

1. when a timeout is expired. A timeout expires in the following conditions:

a. when the user has never been blowing for n seconds since the test was started. The

value of n can be set by the app developer from 15 (which is the default) to 120

seconds

b. when the user stop blowing for 3 sec

c. After 60 seconds despite the user is blowing

Note: According to ATS/ERS guidelines the framework, during the FVCPlus maneuver, calls the delegate method

didReceiveEndOfForcedExpirationIndicator to notify that one EOFE criteria has been achieved

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 48

PEAKFLOW/FEV1 test

The PEAKFLOW/FEV1 manoeuvre AUTOMATICALLY ends:

1. when the spirobankSmart detects a volume < 200mL AND a flow <

300mL/s within a timeframe of 2 seconds [here the test is AUTOMATICALLY RESTARTED]

2. when a significant inhaled volume is detected [here the test is AUTOMATICALLY RESTARTED]

3. when a timeout is expired. A timeout expires in the following conditions:

a. when the user has never been blowing for n seconds since the test was started. The

value of n can be set by the app developer from 15 (which is the default) to 120

seconds

b. when the user stop blowing for 3 sec [here the test is

AUTOMATICALLY RESTARTED]

c. when the user keep on blowing for 60 seconds AND none of the previous condition

has been met

Note: To have an acceptable PEAKFLOW/FEV1 manoeuvre, the exhalation must last no less than 1 seconds

The SVC Test Guide

OVERVIEW
The SVC Plus, includes the following features:

- Slow Vital Capacity with both expiratory and inspiratory maneuvers

- Disposable and reusable turbine supported

- Measured volume and time in real time

- Volume-Time curve points (at the end of each test)

- Measured, predicted, LLn and zScore values for the following parameters:

o evc

o ivc

o ic

o slow Expiratory /Inspiratory Time_s

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 49

Depending on the Author of the reference equations the predicted, LLN and zScore values may not be provided for some

parameters
Depending on how the maneuver is performed, one parameter among EVC and IVC is always = 0
Also the IC can be = 0 when the SCV test is performed without the initial Tidal breathing (inhalation and exhalation during

restful breathing)

Spirometers involved

The spirometers that support the SVC are the following

- Spirobank OXI running firmware version >= 4.3

- Spirobank Smart running firmware version >= 4.3

Enabling the SVC PLUS test

The firmware >= 4.3 (for spirobank Smart and spirobank Oxi) can be provided as already

enabled to the SVC or as disable to the SCV plus. An “SVC disabled” device can be

enabled using a dedicated method (see below)

The firmware < 4.3 for spirobankSmart cannot be enabled (update is necessary)

Note: the Spirobank Smart running firmware version < 4.0 cannot be updated to firmware version

>= 4.3

The framework provides the following methods:

A method to check if the SVC PLUS test is enabled on the connected spirometer

-(void) isDeviceEnabledToSvc:(void(^)(CheckState checkState)) checkStateCompletion

A method to enable the connected spirometer to the FVC PLUS test

- (void)enableSvcWithPassCode:(NSString *)passCode completeBlock:(void(^)(BOOL isSuccess,
NSError *error))boolCompletion;

The passcode (or password) is provided by MIR and is based on the spirometer’s serial

number.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 50

The SVC PLUS REAL TIME TEST

Once a supported spirometer has been discovered and connected

use the following method of the SODevice class To start the FVC Plus test:

- (void)startTestWithTestType:(SOTestType)testType endOfTestTimeout:(Byte)timeoutInSeconds
turbineType:(SOTurbineType)turbine ambientTemperatureCelsius:(Byte) celsiusDegree;

passing SOTestType.SVC as the testType

The EndOfTest timeout is specified by the parameter "timeoutInSeconds"

the EOT timeout is the number of seconds after which the test is automatically ended by

the spirometer if the user was not been blowing at all since the test started

 The valid range for the "timeout" is 15s - 120s.

 * If a value < 15 is passed, the spirometer sets the timeout to 15s.

 * If a value > 120 is passed, the spirometer sets the timeout to 120s

the turbine type (Reusable or Disposable) affects the values of the results.

The total test duration is 60 seconds. After that the device quits from the test (the user should

be warned about it).

A new argument ambientTemperatureCelsius was added for the compliance with ATS2019

guidelines (If you don’t want to pass the temperature just call the version of this method

without this argument)

During the real time test

The SVC test usually starts with a tidal breathing (inhalation and exhalation during

restful breathing)

After 3 similar breaths SODevice calls the delegate method -
(void)didPerformVentilatoryProfile:(SODevice *)soDevice;

This

As soon as the above method is called, the app must advice the user to take a “Deep

breath in, then breath all the way out”.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 51

A delegate method is called for each volume point detected by the device:

- (void)soDevice:(SODevice *)soDevice didUpdateVcVolumeTimePoint:(volumeTimePoint
*)vcVtPoint isFirstPackage:(BOOL)isFirstPackage;

vcVtPoint includes volume_L and time_s.

the volume (in Liters) and the time (in seconds) ready to be plotted on the XY chart:

vcVtPoint.volume_L is the Y point, vcVtPoint.time_s_L the X point

isFirstPackage is set to YES only when the first point of the test is passed.

The Animated FeedBack

The methods provided by the SOPatient class (actualPercentageOfTargetWithFlow and
predictedPercentageOfTargetWithFlow) in order to build an animated feedback during the

FVC real time test cannot be used for the SVC test because they are based on flow.

The end of real time test

The test are stopped in two ways:

- when the stopTest method is invoked

- automatically, when the device/framework detects the EOT (End Of Test) criteria.

End Of Test Criteria

During a spirometry maneuver the End of Test is detected by the spirometer (and thus

propagated by the FRAMEWORK) according to the following criteria:

The FVC PLUS maneuver AUTOMATICALLY ends:

1. when a timeout is expired. A timeout expires in the following conditions:

a. when the user has never been blowing for n seconds since the test was started.

The value of n can be set by the app developer from 15 (which is the default)

to 120 seconds using the parameter endOfTestTimeout of the StartTest method

b. when the user stop blowing for 3 sec

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 52

Test Results

The real time SVC test ends automatically if a timeout expires (see above).

It can be ended anytime by calling the method -(void)stopTest;

At the end of the test, the delegate method of the SODevice class is called to provide the

results of the test

-(void)soDevice:(SODevice *)soDevice didUPdateVcResults:(SOResultsVc *)results;

The SOResultsFVCPlus includes:

- The measured values of all supported parameters:

evc_L (Expiratory Vital Capacity in L), ivc_L_L (Insp Vital Capacity in L), ic (Insp capacity in L), slowExpInsTime_s
(expiratory time in sec)

- The Volume Time loop, including all volume points in Liters and time points in seconds

Predicted values

As soon as the SOPatient object is created, the predicted values and the LLN values are

available to be read.

The zScore values are not available before the test result are provided. This because the

measured values are needed to calculate the zScore.

So, to get the zScore values the following method of SOPatient class must be called AFTER

the SOResultsFvcPlus are received:

-(void) CalculateZscore: (SOResultsFvcPlus * _Nullable) results;

The predicted (in L / Ls, s) , LLN (in L / Ls, s) and zScore (positive or negative number) values

provided (as double) are the following:

double EVC_TargetValue; double EVC_LLN; double EVC_zScore;

double IVC_TargetValue; double IVC_LLN; double IVC_zScore;

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 53

double IC_TargetValue; double IC_LLN; double IC_zScore;

double SETSIT_TargetValue; double fef2575LLN; double fef2575_zScore;

The FVC Plus Test Guide

OVERVIEW

The FVC Plus, includes the following features:

- Forced Vital Capacity with both expiratory and inspiratory maneuvers

- Disposable and reusable turbine supported

- Measured flows and volumes in real time

- Flow-Volume points of the “best” loop (at the end of each test)

- Volume-Time curve points (at the end of each test)

- Measured, predicted, LLn and zScore values for the following parameters:

o fvc

o fev1

o pef

o fef2575

o fev6

o eVol (extrapolated volume)

o pefTime (time to Peakflow)

o fev1/fvc %

o fef75

o fet (flow expiratory time)

o fef25

o fef50

o fivc

o fiv1

o pif

o fev3

o fev05

o fev075

o fev2

o fef7585

o fif25

o fif50

o fif75

o fev1/fev6 %

o fev6/fvc %

o fiv1/fivc %

o fev3/fvc %

o fev05/fvc %

o fev075/fvc %

o fev2/fvc %

o hesitationTime_s

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 54

depending on the Author of the reference equations the predicted, LLN and zScore values may not be

provided for some parameters
depending on how the maneuver is performed, the measured values for inspiratory parameters may not

be provided

Spirometers involved

The spirometers that supports the FVC PLUS are the following

- Spirobank Smart running version >= 3.1

- Spirobank Smart OXI from version 1.0

Enabling the FVC PLUS test
The firmware 3.2 (for spirobankSmart) is natively enabled to the FVC PLUS

The firmware 1.0 for Spirobank OXI is is natively enabled to the FVC PLUS

The firmware 3.1 (for spirobankSmart) is not natively enabled to the FVC PLUS but it can be

enabled using a dedicated method

The firmware < 3.1 for spirobankSmart cannot be enabled (update is necessary)

The framework provides the following methods:

A method to check if the FVC PLUS test is enabled on the connected spirometer

-(void) isDeviceEnabledToFvcPlus:(void(^)(CheckState checkState)) checkStateCompletion

A method to enable the connected spirometer to the FVC PLUS test

- (void)enableSvcWithPassCode:(NSString *)passCode completeBlock:(void(^)(BOOL isSuccess,
NSError *error))boolCompletion;

The passcode (or password) is provided by MIR and is based on the spirometer’s serial

number.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 55

The FVC PLUS REAL TIME TEST
Once a supported spirometer has been discovered and connected

use the following method of the SODevice class To start the FVC Plus test:

- (void)startTestWithTestType:(SOTestType)testType endOfTestTimeout:(Byte)timeoutInSeconds
turbineType:(SOTurbineType)turbine ambientTemperatureCelsius:(Byte) celsiusDegree;

passing SOTestType.FVCPlus as the testType

The EndOfTest timeout is specified by the parameter "timeoutInSeconds"

 the EOT timeout is the number of seconds after which the test is automatically ended by

the spirometer if the user was not been blowing at all since the test started

 The valid range for the "timeout" is 15s - 120s.

 * If a value < 15 is passed, the spirometer sets the timeout to 15s.

 * If a value > 120 is passed, the spirometer sets the timeout to 120s

the turbine type (Reusable or Disposable) affects the values of the results.

The total test duration is 60 seconds. After that the device quits from the test (the user should

be warned about it).

A new argument ambientTemperatureCelsius was added for the compliance with ATS2019

guidelines (If you don’t want to pass the temperature just call the version of this method

without this argument)

During the real time test

During the test the user can perform as many inspired ad expired loops as he/she likes.

A delegate method is called for each flow point detected by the device:

-(void)soDevice:(SODevice *)soDevice didUpdateFlowValue:(float)value isFirstPackage:(BOOL)
isFirstPackage;

The flow value is provided in centiliters. isFirstPackage is set to YES only when the passed

flow is the first one of the test.

The volume value can be calculated in the following way:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 56

For each Expired Flow Point: Current Volume += volumeStep

For each Inspired Flow Point: Current Volume -= volumeStep

An overload of this method is available to get both the volume (in Liters) and the flow (in

Liters per seconds) ready to be plotted on the XY chart.

-(void)soDevice:(SODevice *)soDevice didUpdateFvcPlusFlowVolumePoint:(flowVolmePoint *)
fvPoint isFirstPackage:(BOOL) isFirstPackage;

fvPoint.flow_Ls is the Y point, fvPoint.volume_L the X point

The Animated FeedBack

For whom who wants to use an animated feedback “Smart One app’s style” - instead of

the Flow-Volume curve – the following methods of the SOPatient class can be called.

-(float) actualPercentageOfTargetWithFlow:(float) flow volumeStep:(NSInteger) volumeStep
isFirstPackage:(BOOL)isFirstPackage;

-(float) predictedPercentageOfTargetWithFlow:(float) flow volumeStep:(NSInteger) volumeStep
isFirstPackage:(BOOL)isFirstPackage;

CAUTION: THE FLOW MUST BE PASSED IN cL (centiliters)

These methods retrieve -as percentage- the relative position of an object “moved” by the

user’s blow into a container.

0% is the start position

The values between 1% and 100% indicate the relative positions of the object during the

expiring maneuver

The values between -1% and -100% indicate the relative positions of the object during the

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 57

inspiring maneuver

0%

100 %

-100 %

Method predictedPercentageOfTargetWithFlow refers to the “Target value”: what the user

should perform

Method actualPercentageOfTargetWithFlow refers to “Your value”: what the user is actually

performing

Each method must be called for each flow point received

At the end of the test the balls should be positioned in the 0% position

The end of real time test

The test are stopped in two ways:

- when the stopTest method is invoked

- automatically, when the device/framework detects the EOT (End Of Test) criteria.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 58

End Of Test Criteria

During a spirometry maneuver the End of Test is detected by the spirometer (and thus

propagated by the FRAMEWORK) according to the following criteria:

The FVC PLUS maneuver AUTOMATICALLY ends:

1. when a timeout is expired. A timeout expires in the following conditions:

a. when the user has never been blowing for n seconds since the test was started.

The value of n can be set by the app developer from 15 (which is the default)

to 120 seconds using the parameter endOfTestTimeout of the StartTest method

b. when the user stop blowing for 3 sec

c. After 60 seconds despite the user is blowing or not

According to the last ATS 2019 guidelines, a new delegate method was added in order to

advice that EndOfForcedExpiration has been achieved

The method is: - (void)soDevice:(SODevice *)soDevice
didReceiveEndOfForcedExpirationIndicator:(EndOfForcedExpirationIndicator)eofeIndicator;

typedef NS_ENUM(NSInteger, EndOfForcedExpirationIndicator) {

 PlateauReached,

 ExpiratoryTimeReached

};

When this method is called the FVC plus trial can be ended.

Test Results

The real time FVC Plus test ends automatically after 60 seconds.

It can be ended anytime by calling the method -(void)stopTest;

At the end of the test, the delegate method of the SODevice class is called to provide the

results of the test

-(void)soDevice:(SODevice *)soDevice didUPdateFvcPlusResults:(SOResultsFvcPlus *)results;

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 59

The SOResultsFVCPlus includes:

- The measured values of all supported parameters:

pef_Ls (Exp Peakflow L sec), fev1_L (Forced Exp Vol at 1st sec in L), quality (acceptability calculation), fvc_L (Forced
Exp Capacity in L), fev1_fvc_pcnt (Fev1% in percentage), fev6_L (Forced Exp Volume at 6th sec in L), fef2575_Ls
(Max mid-expiratory flow in L sec), eVol_mL (Extrapolated volume in mL), pefTime_ms (time to reach Peakfow in
milliseconds), fef75_L (Max mid-expiratory flow in L sec), fet_cs (flow expiratory time in sec * 100), fef25_Ls (Max
mid-expiratory flow in L sec), fef50_Ls (Max mid-expiratory flow in L sec), fivc_L (Forced Insp Capacity in L), fiv1_L
(Forced Insp Vol at 1st sec in L), pif_Ls (Insp Peakflow L sec), fev3_L (Forced Insp Vol at 3rd sec in L), fev05_L (Forced
Insp Vol at 0.5th sec in L), fev075_L (Forced Insp Vol at 0.75th sec in L), fev2_L (Forced Insp Vol at 2nd sec in L),
fef7585_Ls (Max mid-expiratory flow in L sec), fif25_Ls (Max mid-expiratory flow in L sec), fif50_Ls (Max mid-
expiratory flow in L sec), fif75_Ls (Max mid-expiratory flow in L sec), fev1_fev6_perc , fev6_fvc_perc, fiv1_fivc_perc,
fev3_fvc_perc, fev05_fvc_perc, fev075_fvc_perc, fev2_fvc_perc

- The best Flow Volume loop, including all volume points in Liters and flow points in Liters

per seconds

- The Volume Time loop, including all volume points in Liters and time points in seconds

Get the FVC curve points at the highest resolution

From SDK version 3.1.0, when connected to a Spirobank smart supporting this feature

(firmware >= 4.6) , you can get the expired only curve points of the last FVC PLUS test

performed at the resolution of 100Hz (one point each 10 milliseconds).

From the SDK version 4.1.0 when connected to a Spirobank smart supporting this feature

(firmware >= 4.7), you can get the expired and the inspired curve points of the last FVC

PLUS test

Note that the high resolution curve points ARE NOT automatically retrieved with the

SOResultsFvcPlus object passed by the didUPdateFvcPlusResults delegate method .

To get the high resolution expired curve points the method

getHighResolutionCurveForLastSpirometryTest of the SODevice object must be called. It

must be called AFTER receiving the didUPdateFvcPlusResults call back

To get the high resolution expired and inspired curve points the method

getHighResolutionCurveForLastSpirometryTestWithInspiration of the SODevice object must

be called. It must be called AFTER receiving the didUPdateFvcPlusResults call back

This last method (withInspiration) is slower than the previous method (only expiration) so if

inspiration points are not needed it is recommended to call the previous one (only

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 60

expiration)

When one of the above-mentioned methods is called (only expiration or expiration and

inspiration) the high resolution curve points are provided by the delegate method

didUpdateHighResolutionCurvePoints (SODevice class)

The above the delegate method retrieves a collection of CurvePoint objects having, each

one, as a properties Flow, Volume and Time

Predicted values

As soon as the SOPatient object is created, the predicted values and the LLN values are

available to be read.

The zScore values are not available before the test result are provided. This because the

measured values are needed to calculate the zScore.

So, to get the zScore values the following method of SOPatient class must be called AFTER

the SOResultsFvcPlus are received:

-(void) CalculateZscore: (SOResultsFvcPlus * _Nullable) results;

The predicted (in L / Ls, s) , LLN (in L / Ls, s) and zScore (positive or negative number) values

provided (as double) are the following:

double peakFlowTargetValue; double fev1LLN; double FEV1_Zscore;

double fev1TargetValue; double peakFlowLLN; double peakFlow_zScore;

double fvcTargetValue; double fvcLLN; double fvc_zScore;

double fev1_fvc_TargetValue; double fev6LLN; double fev6_zScore;

double fev6TargetValue; double fef2575LLN; double fef2575_zScore;

double fef2575TargetValue; double fev1_fvc_LLN; double fev1_fvc_zScore;

double FEF75TargetValue; double FEF75LLN; double FEF75_zScore;

double FETTargetValue; double FETLLN; double FET_zScore;

double FEV3TargetValue; double FEV3LLN; double FEV3_zScore;

double FEV1_FEV6TargetValue;
double
FEV1_FEV6LLN;

double FEV1_FEV6_zScore;

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 61

double FEF25TargetValue; double FEF25LLN; double FEF25_zScore;

double FEF50TargetValue; double FEF50LLN; double FEF50_zScore;

double FIVCTargetValue; double FIVCLLN; double FIVC_zScore;

double FIV1TargetValue; double FIV1LLN; double FIV1_zScore;

double FIV1_FIVCTargetValue; double FIV1_FIVCLLN; double FIV1_FIVC_zScore;

double PIFTargetValue; double PIFLLN; double PIF_zScore;

double FEV3_FVCTargetValue; double FEV3_FVCLLN; double FEV3_FVC_zScore

;

SAMPLE DEMO APPLICATION

The archive contains a subfolder named " Sample App with A.B.C UNIVERSAL FULLBITCODE".

This folder contains an XCode project.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 62

To use it:

a) Open the file SpirobankSmartKit-Playground.xcodeproj with Xcode.

b) In Xode, in the project settings, in the tab “Signing and Capabilities”, select your own Apple certificate:

Edit also the “Bundle identifier” to set a unique identifier. You can for example use “com.your-company-

name.SpirobankSmart”.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 63

c) Build the App and start it on a device.

The App allows you to scan the MIR Bluetooth Low Energy and connect to a MIR Device:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 64

d) The apps also allow you to perform FVC, PEF, FVC PLUS, VC and OXI tests:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 65

e) The app also allows you to upgrade the firmware of the device:

Additional Resources

- MIR Website: https://www.spirometry.com

https://www.spirometry.com/

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 66

Troubleshooting

1. Provisioning Profile Error: No valid provisioning profiles found for this device.

Solution: Ensure you select the correct Provisioning Profile in your project settings.

Bundle Identifier Error:

2. Bundle Identifier 'com.spirometry.SpirobankSmart has already been used.

Solution: Modify the Bundle Identifier in your project settings to make it unique.

3. Undefined symbols for architecture x86_64..."

Solution: Ensure that the architectures of your project and dependencies are compatible.

Building for 'iOS-simulator', but linking in dylib (<your-

path>/MIR_PLUS_SDK_SpirobankSmart_Smartone_IOS_A.B.C/Sample App with A.B.C.D UNIVERSAL

FULLBITCODE/SpirobankSmartKit-Playground/MirSmartDevice.framework/MirSmartDevice) built for 'iOS'

Solution: Ensure you start the application on a real Apple device. The app cannot be started on a simulator.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 67

Annex B. Instruction for Use - MIR SUPER SDK Windows

Introduction

The purpose of this guide is to facilitate use of the tool SUPER SDK (Software Development Kit) for the rapid

development of applications running on windows for monitoring and storing patients, archives of spirometry and oximetry

tests obtained through MIR devices.

MIR SSDK Windows allows you to quickly perform all the necessary operations to use Spirometry or Oximetry.

It consists of various libraries as described below:

- MirBLE: Allows to establish a complete communication with the device through Bluetooth Low Energy (BLE) by

sending it all the necessary commands (tests, calibration, etc.)

- MirChartingCore: Contains all the functions necessary for the creation and management of graphs.

- MirCommunication: Allows to manage communication with all devices, regardless of the protocol.

- MirDataTypes: Contains all the properties (in the form of Enums and methods) for all the elements necessary

for Spirometry or for the Oximetry (for e.g., spirometry parameters, ethnic groups codes, etc.)

- MirDeviceManager: Oversees the management of the communication of MIR devices.

- MirInterpretation: Analyze a session and return its interpretation.

- MirWpfUtilities: Utilities for User Interface on the SampleApp Demo.

- MirWspNET: Manage the USB low level communication.

Prerequisites

Before you begin integrating the Windows SDK into your application, make sure you have the following in place:

.NET Core: Ensure you have a functional installation of Visual Studio on your system. The Windows SDK is primarily

developed in C#, so the .NET runtime version 4.0+ is required.

Windows Version: Our SDK is compatible with Windows 7 (Version 1702) and later versions. Using an older version

does not guarantee the functionality of all features.

Visual Studio installed on Windows

Integration (How to implement?)

To implement the SDK, you have 2 options:

- We provide the WindowsSdkSampleApp application which allows you to open a "Sample Demo Application” in

Microsoft Visual Studio. This project enables you to perform the main operations and see how to implement the

various classes and methods.

- You can follow the chapter "Integration into a Microsoft Visual Studio project" to learn the procedure to use it in

your project."

Sample Demo Application

The "mir_sdk_windows_<version>" archive contains a subfolder named " MIR SDK <version>\MIR SDK - SampleApp

".

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 68

This folder contains a solution named " MIR_SDK_SampleApp.sln".

Open this file with Microsoft Visual Studio. Then, ensure you have .NET Runtime installed on your machine.

This is a .NET project with WPF that contains a single class named "MainWindow".

This class features a WPF graphical interface, allowing you to see the function called behind each button:

To run it, simply build the application using the "Play" icon:

After the build is executed, you'll see the following window:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 69

Description of the various buttons:

Get Archive: Retrieves the archive (that is, the device's memory) and fills a progress bar to show the download progress.

Load Archive From File: Opens a window to select an archive and decode its content based on predefined theoretical

authors.

Save Binary Archive: Saves the archive to a file.

Start FVC: Starts a Spirometry test.

Stop: Stops the FVC test already in progress.

Start Oxi: Starts an Oximetry test.

Stop: Stops the Oximetry test already in progress.

Labels 00 and 00: Values of current BPM and SpO2 when Oximetry test is running.

Use BLE Device / Use USB Device: "Allows you to select which communication method should be used.

Search BLE: Searches the MIR BLE (Bluetooth Low Energy) devices available.

Connect To Device: Once a device is found and selected (by clicking on its name), the button will connect to the device.

Example of screen during a Spirometry session

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 70

Example of screen during an Oximetry session

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 71

Integration into a Microsoft Visual Studio project

For this example, we'll create a blank WPF project with a simple button that will call the SDK to retrieve the file

"MIRXFile".

1) Open Microsoft Visual Studio:

2) Enter the project name and directory:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 72

3) Select the .NET version (here version 6 - LTS):

4) Open the MainWindow.xaml file and create a button with the following code:

<Grid>
 <Button
 x:Name="btnGetMirXFile"
 Width="200"
 Height="80"
 Click="btnGetMirXFile_Click">
 Get MIRX File
 </Button>
</Grid>

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 73

It is now necessary to add references to the SDK.

5) Click on the project name (top right in Visual Studio) and click on “Add Project Reference…”:

6) Press "Browse":

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 74

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 75

7) Select all .dll files provided in the "MIR SDK <version>" folder:

8) Click on “Add” and then “OK”.

9) Now add the code to retrieve the archive:

using MirDeviceManager;
using MirInterpretation;
// ...

namespace MIRIntegration
{
 public partial class MainWindow : Window
 {
 private UsbManager USBManager;
 private MirDevice myDevice;

 public MainWindow()
 {
 InitializeComponent();

 USBManager = UsbManager.GetInstance();
 }

 private void btnGetMirXFile_Click(object sender, RoutedEventArgs e)
 {
 try

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 76

 {
 myDevice = USBManager.GetDeviceConnected();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 return;
 }
 myDevice.OnGetMirXFileProgress += MyDevice_OnGetMirXFileProgress; ;
 myDevice.OnGetMirXFileComplete += MyDevice_OnGetMirXFileComplete; ;
 myDevice.GetMirXFile(MirInterpretationConfiguration.GenerateDefault());
 }

 private void MyDevice_OnGetMirXFileComplete(object? sender, GetMirXFileCompleteArgs
e)
 {
 throw new NotImplementedException();
 }

 private void MyDevice_OnGetMirXFileProgress(object? sender, GetMirXFileProgressArgs
e)
 {
 throw new NotImplementedException();
 }
 }
}

10) Launch the application and conduct the test.

You can now use the full SDK in your project.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 77

Main features

The list below provides an example for each of the main functions, namely:

- Connecting to the device.

- Conducting a test.

- Retrieving results.

- Retrieving and interpreting an archive.

- Updating the device.

- Save the device archive as a .mir or .mirx file.

The other available functions can be accessed from Microsoft Visual Studio:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 78

Downloads the archive from a MIR device via USB or BLE (Bluetooth Low Energy)

1) Connect to the device

The device supports 2 types of connections:

- USB: Requires a connection via USB and the Windows driver installed on your computer.

- BLE: Requires a computer that supports Bluetooth Low Energy (BLE) and a "BLE" device.

1.1) USB connection

a) Create an instance of the USBManager class to open the connection

USB = UsbManager.GetInstance();

b) Create an instance of the MirDevice class to connect the device

MirDeviceManager.MirDevice myDevice;
myDevice = USB.GetDeviceConnected();

1.2) BLE connection

a) Create an instance of the BleManager class to open the connection:

BleManager = BluetoothLowEnergyManager.GetInstance()

b) Monitor events during discover operation:

Subscribe event DeviceDiscovered and DiscoverComplete:

BleManager.DeviceDiscovered += DeviceDiscovered;

BleManager.DiscoverComplete += DiscoverComplete;

To get more information about BLE connection operation subscribe also to the following:

- onBleDeviceConnected

- onBleDeviceDisconnected

- onBluetoothStateOn

- onBluetoothStateOff

- onBleDeviceConnectionError

BleManager.RegisterToBleEvents(OnBleDeviceConnected, OnBleDeviceDisconnected,
onBluetoothStateOn, onBluetoothStateOff, OnBleDeviceConnectionError)

Unregister as following:

BleManager.UnregisterToBleEvents(OnBleDeviceConnected, OnBleDeviceDisconnected,
onBluetoothStateOn, onBluetoothStateOff, OnBleDeviceConnectionError);

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 79

c) Start discovery method:

BleManager.StartDiscovery()

To force discovery interruption call BleManager.StopDiscovery() method.

d) Connect to discovered device.

BleManager.Connect(MirCommunication.BLEDeviceAdvertisement.id)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 80

2) Download the data from the connected device and generate the data Archive (sessions list)

a) Start downloading the tests from the device:

myDevice.GetArchive(MirInterpretationConfiguration.GenerateDefault(PredictedValu

esProvider.Knudson_Knudson));

The GetArchive method features as an optional subject matter the “GenerateDefault” method of the namespace

“MirInterpretationConfiguration”.

The “GenerateDefault” method allows you to establish which predicted value to use for interpreting the imported data.

The implemented predicted values are:

ATS/ERS:

- Knudson – Knudson

- ERS (ECCS) / Knudson

- Crapo & Bass / Knudson

- ERS (ECCS) / Zapletal

- Barcellona / Zapletal

GLI:

- Caucasian

- African Descendent

- North East Asian

- South East Asian

- Others

b) Monitor events during the operation for generating the sessions Archive

Downloading of data from device complete:

myDevice.OnEndDownloading += new EventHandler(OnArchiveDownloaded);
void OnArchiveDownloaded(object sender, EventArgs e)
{
 label1.Text = "Start Archive";
}

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 81

Interpretation of data downloaded from device complete:

myDevice.OnEndParsing += new EventHandler(OnArchiveParsed);
void OnArchiveParsed(object sender, EventArgs e)
{
 label1.Text = "Finalize Parsing;
}

Data loading status in sessions Archive:

myDevice.OnGetArchiveProgress += new
EventHandler<GetArchiveProgressArgs>(OnGetArchiveProgress);

(This event is normally used to manage the progress of the import)

void OnGetArchiveProgress (object sender, GetArchiveProgressArgs e)
{
 progressBar1.Value = e.Value;
}

Loading of the sessions Archive complete:

myDevice.OnGetArchiveComplete += new
EventHandler<GetArchiveCompleteArgs>(OnGetArchiveComplete);
void OnGetArchiveComplete (object sender, GetArchiveCompleteArgs e)
{
 label1.Content = "Parsing Complete"
}

3) Reading of the sessions archive when the operation has been completed

myDevice.OnGetArchiveComplete += new

EventHandler<GetArchiveCompleteArgs>(OnGetArchiveComplete);

 void OnGetArchiveComplete (object sender, GetArchiveCompleteArgs e)

{

 int sessionsNumber = e.Archive.Sessions.Count

}

Conduct the FVC test, generate the graph during the test and receive the results

1) Connect to the device

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 82

1.1) USB

1. Create an instance of the USBManager class to open the connection:

 USB = UsbManager.GetInstance();

2. Create an instance of the MirDevice class to connect the device:

MirDeviceManager.MirDevice myDevice;

myDevice = USB.GetDeviceConnected()

1.2) BLE

1. Create an instance of the MirDevice class

MirDeviceManager.MirDevice myDevice;

2. Connect the device (see paragraph 1.2 BLE connection)

myDevice =BleManager.Connect(MirCommunication.BLEDeviceAdvertisement.id)

2) Conduct the FVC test

a) Start the FVC test

myDevice.StartTest(TestType.FVC, TurbineType.Disposable);

b) Receive the flow/volume data during the test.

- Sign the test execution event to receive the flow/volume data:

myDevice.OnFvcFlowVolume += MyDevice_OnFvcFlowVolume;

- Reading of data during test event:

void MyDevice_OnFvcFlowVolume(object sender, FlowAndVolumeArgs e)
{
 FVchart.AddPointToLine(e.Flow, e.Volume);
}

c) Receive the volume/time data during the test:

- Sign the test execution event to receive the volume/time data:

myDevice.OnFvcVolumeTime += MyDevice_OnFvcVolumeTime;

- Reading of data during test event:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 83

MyDevice_OnFvcVolumeTime(object sender, VolumeAndTimeArgs e)
{
 VTchart.AddPointToLine(e.Volume, e.Time);
}

d) Receive results at the end of the test:

- Sign the test completed event:

myDevice.OnFvcComplete += MyDevice_OnFvcComplete;

- Reading of data at the end of the test:

void MyDevice_OnFvcComplete(object sender, TrialSpiro e)
{
 lstCodLast.Items.Add(e.TrialType);
 lstCodLast.Items.Add(e.DateAndTime);
 lstCodLast.Items.Add(e.CurvePoints.Count);
 lstCodLast.Items.Add(e.Parameters.Count);
 lstCodLast.Items.Add(e.TrialSubType);
}

3) End the test

myDevice.StopTest()

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 84

Conduct the VC test, generate the graph during the test and receive the results

1) Connect to the device

1.1) USB

a) Create an instance of the USBManager class to open the connection

USB = UsbManager.GetInstance();

b) Create an instance of the MirDevice class to connect the device

MirDeviceManager.MirDevice myDevice;
myDevice = USB.GetDeviceConnected();

1.2) BLE

a) Create an instance of the MirDevice class:

MirDeviceManager.MirDevice myDevice;

Connect the device (see paragraph 1.2 BLE connection)

myDevice =BleManager.Connect(MirCommunication.BLEDeviceAdvertisement.id)

2) Conduct the VC test

a) Start the FVC test:

myDevice.StartTest(TestType.VC, TurbineType.Disposable);

b) Receive the volume/time data during the test:

- Sign the test execution event to receive the volume/time data

myDevice.OnVcVolumeTime += MyDevice_OnVcVolumeTime;

- Reading of data during test event

private void MyDevice_OnVcVolumeTime(object sender, VolumeAndTimeArgs e)
{
 VTchart.AddPointToLine ((float)e.Volume, (float)e.Time);
}

c) Start the breathing profile phase:

- Sign the start breathing profile event:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 85

myDevice.OnVcVentilatoryProfile += MyDevice_OnVcVentilatoryProfile;
private void MyDevice_OnVcVentilatoryProfile(object sender, EventArgs e)
{
 MessageBox.Show("Start VC test");
}

d) Receive results at the end of the test:

- Sign the test completed event:

myDevice.OnVcComplete += MyDevice_OnVcComplete;

Load the tests from the .mir or .mirx file

1) Select the .mir or .mirx file

a) Create the subject OpenFileDialog:

Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog();

b) Set the search filter for files with the extension .mir and .mirx:

dlg.Filter = "MIR Files | *.mir; *.mirx";

c) View the file selection window through the ShowDialog function:

Nullable<bool> result = dlg.ShowDialog();

2) Interpret the content of the selected file

a) Read the .mir or .mirx file:

string path = dlg.FileName;
string extension = System.IO.Path.GetExtension(path);
string filename = System.IO.Path.GetFileName(path);
byte[] fileContent = System.IO.File.ReadAllBytes(path);

b) Generate the virtual MIR device:

MirVirtualDevice myVirtualDevice;
MirfileManager FileManager = new MirfileManager();
myVirtualDevice = FileManager.GetVirtualDeviceFromMirFile(fileContent, filename,
FileManager.GetFileType(extension));

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 86

3) Download the data from the connected device and generate the data Archive (sessions list)

a) Start downloading the tests from the virtual device

myVirtualDevice.GetArchive(MirInterpretationConfiguration.GenerateDefault());

b) Monitor events during the operation for generating the sessions Archive from the virtual device

- Data loading status in sessions Archive.

myVirtualDevice.OnGetArchiveProgress += new
EventHandler<GetArchiveProgressArgs>(OnGetArchiveProgress);

(This event is normally used to manage the progress of the import)

void OnGetArchiveProgress (object sender, GetArchiveProgressArgs e)
{
 progressBar1.Value = e. Value;
}

- Loading of the sessions Archive complete.

myVirtualDevice.OnGetArchiveComplete += new
EventHandler<GetArchiveCompleteArgs>(OnGetArchiveComplete);
 void OnGetArchiveComplete (object sender, GetArchiveCompleteArgs e)
{
 label1.Content = "Parsing Complete"
}

4) Reading of the sessions archive when the operation has been completed

myVirtualDevice.OnGetArchiveComplete += new
EventHandler<GetArchiveCompleteArgs>(OnGetArchiveComplete);
 void OnGetArchiveComplete (object sender, GetArchiveCompleteArgs e)
{
 int sessionsNumber = e.Archive.Sessions.Count
}

Generate the .mirx file downloading the data (not interpreted) by the device

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 87

1) Connect to the device

1.1) USB

a) Create an instance of the USBManager class to open the connection

 USB = UsbManager.GetInstance();
b) Create an instance of the MirDevice class to connect the device

MirDeviceManager.MirDevice myDevice;
myDevice = USB.GetDeviceConnected()

1.2) BLE

a) Create an instance of the MirDevice class

MirDeviceManager.MirDevice myDevice;

b) Connect the device (see paragraph 1.2 BLE connection)

myDevice =BleManager.Connect(MirCommunication.BLEDeviceAdvertisement.id)

2) Download the data (not interpreted) by the connected device and generate the .mirx file

a) Start downloading the tests from the device:

myDevice.GetMirXFile(MirInterpretationConfiguration.GenerateDefault());

b) Monitor the events during the operation for downloading data from the device

- Status of data download from device:

myDevice.OnGetMirXFileProgress += OnGetMirXFileProgress;
(This event is normally used to manage the progress of the data download)

void OnGetMirXFileProgress(object sender, GetMirXFileProgressArgs e)
{
 Application.Current.Dispatcher.Invoke(new Action(() =>
 {
 progressBar1.Value = e.Value;
 }));
}

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 88

- Data download from the device complete

myDevice.OnGetMirXFileComplete += OnGetMirXFileComplete;
void OnGetMirXFileComplete(object sender, GetMirXFileCompleteArgs e)
{
 label1.Content = "Download Completed"
}

c) Generate the .mirx file:

void OnGetMirXFileComplete(object sender, GetMirXFileCompleteArgs e)
{
 Directory.CreateDirectory(strAppDataFolder);
 string stringMirXfile = strAppDataFolder + "binary_archive" + ".mirx";
 FileStream fs = new FileStream(stringMirXfile, FileMode.Create,
FileAccess.Write, FileShare.Write);
 fs. Write(e.Archive, 0, e.Archive.Length);
 fs. Close();
}

Perform the Firmware upgrade of the MIR device

1) Connect to the device

1.1) USB

a) Create an instance of the USBManager class to open the connection:

USB = UsbManager.GetInstance();

1.2) BLE

a) Create an instance of the MirDevice class:

MirDeviceManager.MirDevice myDevice;

b) Connect the device (see paragraph 1.2 BLE connection):

myDevice =BleManager.Connect(MirCommunication.BLEDeviceAdvertisement.id)

2) Select the .tsk file to upgrade the firmware of the MIR devices

a) Select the .tsk file:

OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.ShowDialog();

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 89

b) Read the content of the .tsk file

byte[] tsk = System.IO.File.ReadAllBytes(openFileDialog.FileName);

c) Monitor the progress of the upgrade process

- Sign the firmware upgrade status event

mirDevice.OnFirmwareUpgradeProgress += new
EventHandler<UpgradeFirmwareArgs>(OnFirmwareUpgradeProgress);

(This event is normally used to manage the progress of the data download)

private void OnFirmwareUpgradeProgress(object sender,UpgradeFirmwareArgs e)
{
 progressBar1.Maximum = 100;
 if (e.Progress > 100) return;
 progressBar1.Value = (e.Progress);
}

Additional Resources

- MIR Website: https://www.spirometry.com

Troubleshooting

1. The reference assemblies for framework ".NETFramework,Version=v4.X" were not found.

Solution: Ensure that .NET Framework 4.X is installed on your system and that the path to the assemblies is correct.

2. Error: The type or namespace name 'XYZ' could not be found.

Solution: Ensure that all necessary project references and NuGet packages are properly added to your project.

3. Could not load file or assembly MirABCD, Version=A.A.A.A, Culture=neutral, PublicKeyToken=abcd1234'

or one of its dependencies. The system cannot find the file specified.

Solution: Ensure that you have correctly added the reference to the ' MirABCD' assembly in your project. Verify that the

DLL file is present in the output and that all dependencies of this assembly are also available.

4. The application was unable to start correctly (0xc000007b).

Solution: This error may occur if you try to run the application built with a newer version of Microsoft Visual Studio on a

system where the required .NET Framework version is not installed or is outdated. To resolve this issue, install or update

to the necessary version of the .NET Framework.

https://www.spirometry.com/

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 90

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 91

Annex C. Instruction for Use - MIR SUPER SDK WEB (CLOUD/API)

Introduction

MIR API is a RESTful API used to interface a client application or information system with the platform following the

HTTP protocol.

REST (Representational State Transfer) is an architectural style allowing to build applications (Web, Intranet, Web

Service) by exploiting endpoints (endpoints urls) and referencing resources to be exploited according to the verbs of the

HTTP protocol (GET, POST, PUT, DELETE etc. ...).

Environments

MIR API provides 2 URL for the integrations. The Staging is used to make your tests. The Production operations will be

immediately applied on your production account.

Environment URL URL Description

Staging https://ssdk-
api.staging.spirometry.com

This environment must be only

for your test with fake data

Production https://ssdk-api.spirometry.com The production environment.

Endpoints

The endpoints are accessible with the following URLs:

Environment URL

Staging https://ssdk-api.staging.spirometry.com/{endpoint}

Production https://ssdk-api.spirometry.com/{endpoint}

Vocabulary

Trial: A trial is a test performed (Spirometry or Pulse Oximetry) that contains all the data related to the test (i.e., date,

time, test values)

Session: A session (Spirometry or Pulse Oximetry) can contain 1 to 8 trials. The session contains the date, time, and

trials.

Parameter: A parameter is a "value" calculated (e.g., FVC for Spirometry or SpO2 Average for Pulse Oximetry). A

parameter contains a unit and a value.

Patient: A patient is an object that contains all the information necessary to perform at least a Spirometry as well as

their identification information (ID, first name, last name)

Interpretation: Each test can have an interpretation in the form of a numerical value and in the form of a string (for

example: normal spirometry).

Predicted values: In the context of spirometry, each patient has “predicted values” for each parameter. These predicted

values are different depending on the reference used (also called "author").

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 92

Authentication

Principles

Our API uses OpenID Connect (OIDC) to identify and authenticate clients.

Any request to the API is verified thus must include a valid JWT (Json Web Token).

This must be sent in the Authorization header.

If the Authorization header is not completed and valid, the request will be considered as not authenticated (HTTP code

401).

If any alteration of the token happens (IP address change is one of them) you'll receive HTTP code 403.

More information on OpenID Connect and JWT on:

- https://openid.net/connect/

- https://jwt.io/

Credentials

Please contact us to get your API keys.

Permissions

To access our APIs, users must have specific permissions defined by "scopes". Each scope requires a distinct

permission to access its associated resources.

If a user attempts to access a resource without the necessary permissions for the relevant scope, an HTTP 403

Forbidden response will be returned.

Should a user require additional access or permissions, they are encouraged to contact us for further assistance.

Scopes

data-types: Allows returning the description and translation (if applicable) of a parameter.

imports: Allows reading of MIR data and converting it into raw data.

convert: Allows converting data (either in file form or raw data) from one format to another.

interpretation: Allows obtaining the medical interpretation from a Session or a Trial.

oximeter-analysis: Allows performing a full analysis of an Oximetry session.

predicted-values: Allows calculating the predicted value for a given patient.

print: Allows generating the <format> report for the given session.

How to get a Bearer Token

To access the protected resources of our API, authentication is required. This authentication can be achieved in two

ways:

1. Simple Authentication: By sending a username and password.

2. Two-Factor Authentication: A One-Time Password (OTP) might be requested after simple authentication to

enhance security

https://openid.net/connect/
https://jwt.io/

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 93

Authentication Request

To initiate an authentication request, send a POST request with the following JSON in the request body:

{
 "username": "your_username",
 "password": "your_password"
}

Authentication Response

The API's response will be in the format:

{
 "status": int,
 "access_token": "ey...", // or null if "modes" != null
 "token_type": "Bearer", // or null if "modes" != null

 "scopes": ["parser", "import", ".."]", // or null if "modes" != null
 "modes": null // or ["sms", "mail"],
 "session_id": "string", // or null if "modes" != null
}

Status Codes:

● 0: Authentication OK

● 1: Malformed request

● 2: Unknown application

● 3: Incorrect credentials

● 4: Account blacklisted

● 5: No callback channel defined

● 9: User_Info empty

● 10: Callback required

If the response contains a non-null modes key and contains a valid session_id, it indicates that two-factor authentication

is required.

Two-Factor Authentication

For the following requests (which contain "/otp/{route}"), you must include in the header: "X-Session-Id": "the

value of the field session_id".

1. Choose a mode to receive the OTP:

Call the /otp/mode route with the payload:

{
 "mode": "sms" // or "mail"
}

2. Receive and send the OTP:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 94

Once you've received the OTP (via SMS or email depending on your chosen mode), call the /otp/send route

with the payload:

{
 "code": "123456" // Your OTP code
}

The response for this step will be:

{
 "status": 0,
 "access_token": "ey...",
 "token_type": "Bearer",
 "modes": null
}

Once you have obtained the Bearer Token, you must send this token in each of your requests by adding to the header

"Authorization: Bearer <token>”

Example:

Content-Type: application/json;charset=utf-8
Accept: application/json;charset=utf-8
Authorization: Bearer ...

POST /the/route
{"the": "data"}

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 95

Rate limiting

The API limits the number of requests to 60 requests per minute per user.

If the incoming request exceeds the specified rate limit, a response with a 429 HTTP status code will automatically be

returned.

Pagination

When retrieving a list of objects with a [GET] request, results are being paginated by the API.

"meta":{

 "current_page": 1,
 "from": 1,

 "last_page": 1,
 "path": "http://example.com/users",

 "per_page": 15,
 "to": 10,

 "total": 10

}

Pagination information will be presented in the meta object, available in the payload body and described below.

The meta object:

Field Type Description

current_page integer Index of the current page (first
page: 1)

from integer Index of the first item available
on the current page (for
example: 20)

last_page integer Index of the last page

path string URL of the route with the
current page

per_page integer Number of items per page (for
example: 20)

to integer Index of the last item available
on the current page (for
example: 40)

total integer Total number of items that will
be returned by the API.

You can send the query parameter ?page=<int> to specify the page you wish to view. It's important to note that if the

parameter is not specified, the default page is set to 1.

Errors

The API uses standard HTTP response codes to indicate the success or failure of an API request:

- 2xx codes indicate success.

- 4xx codes indicate an error that failed given the information provided.

- 5xx codes indicate an error with our servers.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 96

An error and a troubleshoot key will be present in the response payload body. The troubleshoot key is a readable

description of the error.

More detailed HTTP response codes will be provided in endpoints documentation.

Code descriptions:

Code Description

200 OK - The request has succeeded.

201 Created - The request has been fulfilled and has

resulted in one or more new resources being

created.

204 No Content - Server has successfully fulfilled the

request, no additional content sent in the

response payload body.

400 Bad Request - Server cannot process the
request due to something that is perceived to be
a client error.

401 Unauthorized - Lack of valid authentication

credentials for the target resource.

404 Not Found - Server did not find the target

resource.

405 Method Not Allowed - The method is known by
the server but not supported.

429 Rate limit exceeded

422 Unprocessable Entity - The server understands

the content type of the request entity, and the

syntax of the request entity is correct, but it was

unable to process the contained instructions. It

happens when the data sent in the POST/PUT or

DELETE request is invalid.

500 Internal Server Error - Server encountered an

unexpected condition.

Error example response:

{
 "code": 404, // The HTTP code
 "message": "..." // A description
}

Content-Type

Every POST, PUT and DELETE HTTP request sent to the API must specify the "Content-Type" and the "Accept" entities

header to application/json;charset=utf-8.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 97

Routes

The following list describes the available API routes with their description, input data, output
data, and request type. For the input and output JSON payloads, please refer to the OpenAPI
Swagger document attached to this documentation.

Data Types

/v1/data-types/translate

Scope: data-types

Request type: POST

Input data: Array of parameters to translate and/or to get the translation.

Output data: Array of the given parameters with their translations (If application) and their descriptions.

Description: Translate parameters to the specified language (for FVC = CVF in French (France)) and return a complete

description of the parameter (with its Unit)

Imports

/v1/imports/from-archive/device

Scope: imports

Request type: POST

Input data: Base64 of the MIR archive

Output data: Array of sessions with the patient object for each session

Description: Parse the archive coming from a device (sent in base64) and return a JSON object (array of sessions)

/v1/imports/from-archive/mir-file

Scope: imports

Request type: POST

Input data: Base64 of the MIR file

Output data: Array of sessions

Description: Parse the archive coming from a .mir or .mirx file (sent in base64) and return a JSON object (array of

sessions)

Convert

/v1/convert/hl7/from/patient

Scope: convert

Request type: POST

Input data: HL7 string of the patient

Output data: Patient object

Description: Convert a HL7 string of a patient to a JSON object

/v1/convert/hl7/from/session

Scope: convert

Request type: POST

Input data: HL7 string of the session

Output data: Session object

Description: Session object (with “patient” object “nested” if applicable)

/v1/convert/hl7/from/spirometry

Scope: convert

Request type: POST

Input data: HL7 string of the spirometry

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 98

Output data: Spirometry (trial) object

Description: Convert a HL7 string of a spirometry test (for e.g., sent from MIR Spiro Ipad) to a JSON object

/v1/convert/hl7/from/oximetry

Scope: convert

Request type: POST

Input data: HL7 string of the spirometry

Output data: Oximetry (trial) object

Description: Convert a HL7 string of an oximetry test (for e.g., sent from MIR Spiro Ipad) to a JSON object

/v1/convert/hl7/to/patient

Scope: imports

Request type: POST

Input data: Patient object

Output data: HL7 string of the patient

Description: Create the HL7 string of the patient for the given JSON object

/v1/convert/hl7/to/session

Scope: convert

Request type: POST

Input data: Session object

Output data: HL7 string of the session

Description: Create the HL7 string of a full session for the given JSON object

/v1/convert/hl7/to/spirometry

Scope: convert

Request type: POST

Input data: Spirometry (trial) object

Output data: HL7 string of the spirometry (trial)

Description: Create the HL7 string of a spirometry test for the given JSON object

/v1/convert/hl7/to/oximetry

Scope: convert

Request type: POST

Input data: Oximetry (trial) object

Output data: HL7 string of the oximetry (trial)

Description: Create the HL7 string of an oximetry test for the given JSON object

/v1/convert/gdt/from/spirometry

Scope: convert

Request type: POST

Input data: Base64 of the GDT file content

Output data: Spirometry (trial) object

Description: Convert a GDT exported file of a spirometry (for e.g., sent from MIR Spiro Windows) to a JSON object

/v1/convert/gdt/from/oximetry

Scope: convert

Request type: POST

Input data: Base64 of the GDT file content

Output data: Oximetry (trial) object

Description: Convert a GDT exported file of a oximetry (for e.g. sent from MIR Spiro Windows) to a JSON object

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 99

Interpretation

/v1/interpretation/spirometry/{author}/{elements?}

Scope: interpretation

Request type: POST

Input data: Spirometry object

Output data: Interpretation object

Description: Return the interpretation of the given spirometry session with the given author and return only the given

elements.

/v1/interpretation/oximetry/{author}

Scope: interpretation

Request type: POST

Input data: Oximetry object

Output data: Interpretation object

Description: Return the interpretation of the given oximetry session

Oximeter Analysis

/v1/oximetry-analysis/holter

Scope: oximetry-analysis

Request type: POST

Input data: Oximetry object

Output data: Oximetry object (converted to Holter analysis)

Description: Return the Holter analyze for the given oximetry session

/v1/oximetry-analysis/sleep

Scope: oximetry-analysis

Request type: POST

Input data: Oximetry object

Output data: Oximetry object (converted to Sleep analysis)

Description: Return the sleep analyze for the given oximetry session

/v1/oximetry-analysis/walking-test

Scope: oximetry-analysis

Request type: POST

Input data: Oximetry object

Output data: Oximetry object (converted to Walking Test analysis)

Description: Return the 6MWT analyze for the given oximetry session

Predicted Values

/v1/predicted-values/{predictedAuthor}

Scope: predicted-values

Request type: POST

Input data: Patient object

Output data: Predicted values object

Description: Return the predicted values for the given patient

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 100

Print

/v1/print/{impressionFormat}

Scope: print

Request type: POST

Input data: Session object

Output data: Base64 of the PDF file generated

Description: Return the PDF of the given session (in base64)

/v1/print/{impressionFormat}/dicom

Scope: print

Request type: POST

Input data: Session object

Output data: Base64 of the DICOM file generated

Description: Return the DICOM PDF of the given session (in base64)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 101

Troubleshooting

1. Network Connectivity Issue Error: Application can't connect to the API.

Solution: Check your internet connection and firewall settings to ensure that the application can reach the external API.

You may need to contact your IT department.

2. Incorrect API URL Error: HTTP 404 Not Found.

Solution: Double-check the API URL for the official documentation. Make sure you're pointing to the correct endpoint

and including any necessary path parameters.

3. Invalid API Key or Token Error: HTTP 401 Unauthorized.

Solution: Verify that your API keys or tokens are correct. Regenerate a new key or token if necessary and update it in

your application's configuration settings.

4. Incorrect HTTP Headers Error: HTTP 400 Bad Request.

Solution: Check your HTTP headers, such as Content-Type and Authorization. Make sure they are correctly formatted

and include all the necessary information, as specified in the API documentation.

5. Wrong HTTP Status Codes Error: Receiving unexpected HTTP status codes.

Solution: Investigate the received HTTP status codes and consult the API documentation to understand what they mean.

Take corrective action based on this information.

6. Rate Limit Exceeded Error: HTTP 429 Too Many Requests.

Solution: Review the rate limits in the API documentation and implement rate-limiting or throttling in your application to

avoid hitting these limits.

7. Mismatched Response Format Error: Sending JSON payloads but not receiving JSON in return.

Solution: Ensure that you're setting the Accept: application/json header when making the API request. This tells the

server that you expect a JSON-formatted response.

8. Persistent Issues Error: Issues remain despite checks.

Solution: Contact our team.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 102

Annex D. Instruction for Use - MIR SUPER SDK MacOS

Introduction

The purpose of this guide is to facilitate use of the tool SUPER SDK (Software Development Kit) for the rapid

development of applications running on MacOS for monitoring and storing patients, archives of spirometry and oximetry

tests obtained through MIR devices.

MIR SSDK MacOS allows you to quickly perform all the necessary operations to use Spirometry or Oximetry.

It consists of various libraries as described below:

- MirCharting: Contains all the functions necessary for the creation and management of graphs.

- MirCommunication: Allows to manage communication in USB and BLE with all devices, regardless of the

protocol.

- MirDataTypes: Contains all the properties (in the form of Enums and methods) for all the elements necessary

for Spirometry or for the Oximetry (for e.g., spirometry parameters, ethnic groups codes, etc.)

- MirDeviceManager: Oversees the management of the communication of MIR devices.

- MirInterpretation: Analyze a session and return its interpretation.

Prerequisites

Before you begin integrating the MacOS SSDK into your application, make sure you have the following in place:

Xcode: Ensure you have a functional installation of Xcode on your system. The MacOS SSDK is primarily developed in

Swift and need at least Swift version 4.2.

OS Version: Our SDK is compatible with MacOS 10.13 and iOS 11.0 and later versions. Using an older version does

not guarantee the functionality of all features.

For MacOS, the SSDK needs at least 2 GB of RAM, but we recommend using 4 GB of RAM.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 103

How to implement

To implement the SDK, you can follow the chapter "Integration into a Xcode project" to learn the procedure to use it in

your project.

Integration into a XCode project

For this example, we'll create a blank MacOS project with a simple button that will call the SDK to retrieve a device

archive.

1) Open Xcode and create new project, choose MacOS and App:

2) Enter the product name, the organization identifier, the interface and the language:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 104

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 105

3) Now that you have chosen the path of your application, let’s create a button to use a function of the SSDK, open

the ContentView file and create a button with the following code:

struct ContentView: View {
 var body: some View {
 Button(action: action) {
 Text("action")
 }.padding()
 }
}

It is now necessary to add references to the SSDK, for this we’ll use Cocoapods.

You can find how to install Cocoapods here.

4) Start a terminal and go to the root of your project and initialize Cocoapods.

$ pod init

5) After this, you’ll have a file named Podfile, this is where you’ll put all your dependencies, for this example we’ll

use MirCommunication.

https://guides.cocoapods.org/using/getting-started.html

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 106

MirCommunication depends on MirDataTypes so we need to add it too.

6) Move the folder of the dependencies to the path you specified in the Podfile, then in the terminal start the

installation of the dependencies.

7) Now add the code to retrieve the archive:

import SwiftUI
import MirCommunication

struct ContentView: View {
 var body: some View {
 Button(action: action) {
 Text("action")
 }.padding()
 }
}

#Preview {
 ContentView()
}

func action() {
 let shared = MIRCommUSB()
 shared.getDeviceArchive()
}

8) Launch the application and conduct the test.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 107

You can now use the full SDK in your project.

Main features

The list below provides an example for each of the main functions, namely:

- Connecting to the device.

- Conducting a test.

- Retrieving results.

- Retrieving an archive.

- Save the device archive as a .mir or .mirx file.

- Updating the device.

The other available functions can be accessed from Xcode Pods list:

Connecting to a device

The device supports 2 types of connections:

- USB: Requires a connection via USB.

- BLE: Requires a computer that supports Bluetooth Low Energy (BLE) and a

"BLE" device.

1.1) USB connection

a) First find the USB devices by calling the shared instance of MirDeviceManager

MirDeviceManager.shared.startDiscovering()

b) Here’s an example on how to monitor events.

 MirDeviceManager.shared.startDiscovering {
 (devices) in

 if let device = devices.last, device is MirUsbDevice
 {
 connectDevice(device: device)
 }

 NotificationUtility.post(.deviceDiscovered)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 108

 } deviceConnected: {
 (device) in

 connectedDevice = device
 NotificationUtility.post(.deviceConnected)

 } deviceDisconnected: {
 (device) in

 NotificationUtility.post(.deviceDisconnected)
 }

c) You can check discovered devices in this variable.

MirDeviceManager.shared.UsbDiscoveredDevices

d) Then call the shared instance of MirDeviceManager and call the function connectUsbDevice with the selected

device.

MirDeviceManager.shared.connectUsbDevice(device)

For more information for the parameters, please refer to the file MirDeviceManager in MirDeviceManager pod.

1.2) BLE connection

a) First find the Bluetooth devices by calling the shared instance of MirDeviceManager

MirDeviceManager.shared.startDiscoveryBluetooth()

b) Here’s an example of how to monitor events.

var deviceDiscoveredObserver: NSObjectProtocol?

MirDeviceManager.shared.startDiscoveryBluetooth()

deviceDiscoveredObserver =
NotificationUtility.addObserver(for: .deviceDiscovered) { notification in

let devices = MirDeviceManager.shared.bluetoothDiscoveredDevices.filter { d in
 return d as? MirBluetoothDevice != nil
 } as! [MirBluetoothDevice]
}

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 109

c) You can check discovered devices in this variable.

MirDeviceManager.shared.bluetoothDiscoveredDevices

d) Then call the shared instance of MirDeviceManager and call the function connectBluetoothDevice with the

selected device.

MirDeviceManager.shared.connectBluetoothDevice(device)

For more information for the parameters, please refer to the file MirDeviceManager in MirDeviceManager lib.

Conduct the FVC test, generate the graph during the test and receive the results

1) Connect to the device.

See Connecting to a device.

2) Conduct the FVC test.

a) Once you have connected your device, you can get the connected device and start the FVC test.

DeviceManager.connectedDevice?.startFvcTrial(…)

b) You can get the trial result in the completion of the startFvcTrial

[…], completion: {
 [weak self] (trial) in

 if let trial = trial {
 self?.trialReceived(trial)
 }
}

c) If you need a certain value from the trial, you can use the function getParameterMeasuredValue from

MirDataTypes.

trial.getParameterMeasuredValue(code: MirParameterCode.FEV1)

The MirParameterCode can also be found in MirDataTypes.

3) End the test.

DeviceManager.connectedDevice?.stopTrial(…)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 110

Conduct the VC test, generate the graph during the test and receive the results

1) Connect to the device.

See Connecting to a device.

2) Conduct the VC test.

a) Once you have connected your device, you can get the connected device and start the VC test.

DeviceManager.connectedDevice?.startVcTrial(…)

b) You can get the trial result in the completion of the startVcTrial

[…], completion: {
 [weak self] (trial) in

 if let trial = trial {
 self?.trialReceived(trial)
 }
}

c) If you need a certain value from the trial, you can use the function getParameterMeasuredValue from

MirDataTypes.

trial.getParameterMeasuredValue(code: MirParameterCode.FEV1)

The MirParameterCode can also be found in MirDataTypes.

4) End the test.

DeviceManager.connectedDevice?.stopTrial(…)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 111

Retrieving an archive and generating the .mirx file

1) Connect to the device.

See Connecting to a device.

2) Download the data (not interpreted) by the connected device and generate the .mirx file

a) Start downloading the tests from the device:

DeviceManager.connectedDevice?.queryArchive(…)

You can monitor the download of the archive by using the parameter progressBlock of the function and completion when

the file has finished the downloading.

b) Generate the .mirx file:

DeviceManager.connectedDevice.getMirXFile(progressBlock: {
 [weak self] (progress) in

 self?.updateProgressBar(withValue: progress)
 }, completion: {
 [weak self] (rawDeviceInfo, rawArchive) in

MirFiles.createMirFileFromArchive(rawArchive!.rawData, rawDeviceInfo!.rawData)
}) })

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 112

Perform the Firmware upgrade of the MIR device

1) Connect to the device.

See Connecting to a device.

2) Select the .tsk file to upgrade the firmware of the MIR devices

a) Select the .tsk file and read his content:

 let openPanel = NSOpenPanel()
 openPanel.allowsMultipleSelection = false
 openPanel.canChooseDirectories = false
 openPanel.canCreateDirectories = false
 openPanel.canChooseFiles = true
 openPanel.allowedFileTypes = ["tsk"]

 openPanel.beginSheetModal(for: window) {
 (result) -> Void in
 if result == NSApplication.ModalResponse.OK {
 if let validUrl = openPanel.url {
 self.resetDataSource()

 var title = “Are you sure to update the connected device with
$0?”
 title = title.replacingOccurrences(of: "$0", with:
validUrl.deletingLastPathComponent().lastPathComponent)
 if AlertUtility.showConfirmationAlert(withTitle: title) {
 let fw = MirFirmware()
 fw.data = try? Data(contentsOf: validUrl)

 DispatchQueue.main.async {
 self.showUpdateFirmwareScreen(fw)
 }
 }
 }
 }
 }

b) Once we have the firmware, we can start the upgrade:

 firmwareUpdate = MIRCommUSBFirmwareUpdate()

 let tskFromFile = firmware!.data
 let byteArray = [UInt8](tskFromFile!)

firmwareUpdate?.updateFirmware(byteArray) {status, positionPercent

You can use status and positionPercent to keep track of the progress of the firmware upgrade.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 113

if positionPercent >= 0 {
 self.updateProgressBar(withValue: Int(positionPercent))
}

switch status {
 case .initializing:
 self.labelStatus.text = “Initialization“
 break
 case .error:
 […]

Additional Resources

- MIR Website: https://www.spirometry.com

https://www.spirometry.com/

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 114

Annex E. Instruction for Use - SSDK Android

Introduction

The purpose of this guide is to facilitate use of the tool SUPER SDK (Software Development Kit) for the rapid

development of applications running on Android for monitoring and storing patients, archives of spirometry

and oximetry tests obtained through MIR Bluetooth devices.

MIR SSDK Android allows you to quickly perform all the necessary operations to use Spirometry or Oximetry.

The SSDK is only compatible with Spirobank Smart, Smart One and Spirobank II Smart devices.

Prerequisites

Before you begin integrating the Android SDK into your application, make sure you have the following in

place:

● Minimum Android 4.3 (Spirobank II Smart) or 5.0 (Spirobank Smart/SmartOne) version

● Compatible Hardware for BLE Support

● Bluetooth Permissions (BLUETOOTH, BLUETOOTH_ADMIN, and ACCESS_FINE_LOCATION (for

Android 6.0 and above)).

● 1GB RAM

● Free Space of the device

● Full access to internet Connection (with at least 1 Mbits/s)

Integration (How to implement?)

Spirobank Smart SDK Android Guide

Import and configure the SDK Module

To import the SDK Module inside your project just take the following steps:

1. Open your Android Studio Project and go to menu “File” -> “New” -> “New Module…”

2. Select “Import .JAR/.ARR Package” and click next

3. Select “spirobanksmartsdk.aar” file and click finish

4. Right click on your project and “Open Module Settings”, go to “Dependencies” tab and add “Module

dependency” “spirobanksmartsdk”.

Starting up a Device Manager

The first step to take to use this framework is to get a DeviceManager object.

The DeviceManager has been implemented according to the singleton pattern so you would get a same

instance of it to be used in every context of your app.

The DeviceManager class also exposes the setDeviceManagerCallback to set DeviceManagerCallback.

Perform a scan (discovery)

With an instance of deviceManager the client app may call the startDiscovery method.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 115

The discovery will retrieves all the SPIROBANK SMART, SPIROBANK SMART OXI, SMART ONE and

SMART ONE OXI devices in range. For each device discovered, the deviceManager call its callback method

deviceDiscovered.

Perform a “direct connection” to a Device

With an instance of deviceManager, the client app may call the connect method passing the DeviceInfo

object.

When deviceManager calls its callback method deviceConnected it means that the device is connected and

all its services and characteristics have been read.

If the same device is already connected the connect method will not perform any action.

If a different device is already connected, the connect method disconnect it before connecting that new device

Start a test in the “multitest mode” environment

IMPORTANT NOTE: For the scope of this SDK, “test“ means a complete expiratory maneuver.

The current version of SDK supports the “multitest mode”. This means that different kind of tests can now be

started.

At present the tests supported are:

- the Spirometry test (FVC test) (only SPIROBANK SMART): a forced expiratory maneuver that lasts 6

seconds (3 for kids)

- the Spirometry enhanced test (FVC PLUS test) (only enabled SPIROBANK SMART with FW 3.1+): a

forced expiratory and inspiratory maneuver, with the possibility to do multiple loops of inspiration and

expiration

- the PeakFlow/Fev1 test: a forced expiratory maneuver that lasts 1 second

- the Flow Monitoring Test (only SPIROBANK SMART from firmware 3.0)

- the Oximetry Test (only SPIROBANK SMART OXI and SMART ONE OXI)

- the Vital Capacity test (VC test) (only enabled SPIROBANK SMART with FW 4.4+)

Please note:

1. SpirobankSmart devices equipped with firmware versions (<1.7) do not support the multitest mode, the only valid is

FVC test. The command to start the PeakFlow/Fev1 test would be ignored.

2. SmartOne devices supports only PeakFlow/Fev1 test, the command to start the FVC test would be ignored.

To require a specific test to be started by the device, the SDK provides a method with a parameter.

With an instance of Device the startTest(Context context, TestType testType, TurbineType turbineType)

method has to be invoked to start one of the supported test type. Pass to this method the parameter

TestType.Fvc to start the FVC test, TestType.FvcPlus to start the FVC PLUS test, the parameter

TestType.PefFev1 to start the PeakFlow/Fev1 test, the parameter TestType.FT_Monitor to start the Flow

Monitoring test, the parameter TestType.Oxi to start the Oximetry test or the parameter TestType.Vc to start

the VC test.

During the spirometry test the Device object calls its delegate method flowUpdated (Device device, float flow,

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 116

int stepVolume, boolean isFirstPackage) to pass the flow values measured.

For each flow point received the current volume can be get by adding the stepVolume to the current volume.

At the end of each expiration maneuver (test), Device object usually calls its delegate method (according to

the specific TestType) to provide the test’s results:

resultsUpdated (ResultsPefFev1 resultsPefFev1)

resultsUpdated (ResultsFvc resultsFvc)

resultsUpdated (ResultsFvcPlus resultsFvcPlus)

resultsUpdated(ResultsVc resultsVc)

Note that if the test is performed very bad (too poor flows, or no expiration at all) the device is not able to calculate the

results and therefore the delegate method resultsUpdated IS NOT CALLED AT ALL.

During the oximetry test the Device object calls its delegate method oximetryValuesUpdated(int signal, int

spO2, int heartRate, Device.OximetryWarnings warning, boolean isDataValid) to pass the values measured

and oximetryPlethysmographicValuesUpdated (double ppgSignal,int minY,int maxY) to pass pletismographic

curve data.

At the end of Oximetry the device provide the test’s results:

resultsUpdated (ResultsOxy resultsOxi)

Customize the End Of Test Time Out

You can customize the End Of Test Time Out from 15 sec. (default) to 120 sec. For the Oximetry test this

parameter will be ignored.

The parameter can be passed to the method:

startTest(Context context, TestType testType, TurbineType turbineType, byte endOfTestTimeout_sec)

This function works from Spirobank Smart firmware version 2.4 and Smart One 3.5. The previous versions always use

15 sec. We recommend to use the minimum necessary value to preserve device battery life.

Specify turbine type

You can specify the turbine type Device.TurbineType.disposable or Device.TurbineType.reusable (default).

The parameter can be passed to the method:

startTest(Context, context, TestType testType, TurbineType turbineType, byte endOfTestTimeout_sec)

This function works from Spirobank Smart firmware version 2.7 and Smart One firmware version 3.6. The previous

versions always use reusable turbine. This instruction does affect the reading made by the device because different

algorithms are used for each turbine type

StartTest handshaking

When the client app sends the StartTest method (whatever is the overload used, and whatever is the kind of

test requested) the SDK, from version 2.6.0 call a new call back: testStarted This method is invoked when

the device is actually READY to take measurements. For this reason, this new method is the right place to

raise a message that the user can START EXHALING (blowing).

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 117

The Results provided by the different test types are the following:

PARAMETER PROVIDED BY

pef_cLs (Peakflow cL sec) Fvc-PefFev1

fev1_cL (Forced Exp Vol at 1th sec in cL) Fvc-PefFev1

quality (acceptability calculation) Fvc-FvcPlus-PefFev1

fvc_cL (Forced Exp Capacity in cL) Fvc

fev1_fvc_pcnt (Fev1% in percentage) Fvc-FvcPlus

fev6_cL (Forced Exp Volume at 6th sec in cL) Fvc

fef2575_cLs (Max mid-expiratory flow) Fvc

tempCelsius (Room temperature) FvcPlus

btps (BTPS) FvcPlus

fvc_L (Forced Exp Capacity in L) FvcPlus

fev1_L (Forced Exp Vol at 1th sec in L) FvcPlus

pef_Ls (Peakflow L sec) FvcPlus

fef75_Ls FvcPlus

fef2575_Ls FvcPlus

fet_s FvcPlus

fev6_L (Forced Exp Volume at 6th sec in L) FvcPlus

fev6perc FvcPlus

fev6_fvc FvcPlus

fef25_Ls FvcPlus

fef25_Ls FvcPlus

fef50_Ls FvcPlus

fivc_L FvcPlus

 fiv1_L FvcPlus

fiv1perc FvcPlus

pif_Ls FvcPlus

fev3_L FvcPlus

fev3perc FvcPlus

timeToPef_s FvcPlus

fev05_L FvcPlus

fev05perc FvcPlus

fev075_L FvcPlus

fev075perc FvcPlus

fev2_L FvcPlus

fev2perc FvcPlus

fef7585_Ls FvcPlus

fif25_Ls FvcPlus

fif50_Ls FvcPlus

fif75_Ls FvcPlus

fvPoints (Array: all flow volume points) FvcPlus

vtPoints (Array: all volume time points) FvcPlus

hesitationTime_s FvcPlus

eVol_mL (Extrapolated volume in mL) PefFev1

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 118

vext_L (Extrapolated volume in L) FvcPlus

pefTime_sec (time to reach Peakfow in sec) PefFev1

spO2Mean (%) Oximetry

spO2Max (%) Oximetry

spO2Min (%) Oximetry

HeartRateMean (bpm) Oximetry

HeaxrtRateMax (bpm) Oximetry

HeartRateMin (bpm) Oximetry

spo2Points (Array) Oximetry

heartRatePoints (Array) Oximetry

evc_L VC

ivc_L VC

ic_L VC

setOrSit_s VC

vtPoints (Array) VC

Device Info

From device object you can get device info by calling getDeviceInfo() method.

Device Info provides the following information:

METHOD RESPONSE DESCRIPTION

getAdvertisementDataName() Bluetooth device name

getAddress() Bluetooth device address

getName() MIR product name

getProtocol() MIR communication protocol

getSerialNumber() MIR device serial number

How the test is stopped/restarted in the “multitest mode” environment

The test is stopped in two ways:

1) when the stopTest method is invoked

2) automatically, when the device/framework detects the EOT (End Of Test) criteria. See above the

chapter End Of Test Criteria.

In the FVC-FVC PLUS test

When the test is stopped (automatically or not) the device always quits from “test mode“ and a new command

“startTest” needs to be sent to start a new test.

The sequence of the Device delegate methods called during an FCV test are the following:

flowUpdated

testStopped (always called, even if the test was stopped by the invocation of the stopTest method)

resultsUpdated (which might not be called in case there aren’t the conditions to return the Results)

In the Peakflow/Fev1 test

There is a different behavior depending how the stop the test has occurred.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 119

1) when the test is stopped:

• by the invocation of the stopTest method

• by the expiration of the timeouts

device quits from the “test mode” and a new command “startTest” needs to be sent to start a new test.

In this case the sequence of the Device delegate methods called are the following:

flowUpdated

resultsUpdated (which might not be called in case there aren’t the conditions to return the Results)

testStopped (always called, even if the test was stopped by the invocation of the stopTest method)

It is strongly recommended to avoid to place the call of the startTest method into the testStopped delegate method

because this might cause a loss of flows. If you need to give more time to the user, you can “Customize the End Of

Test Time Out” in “startTest” command.

2) when the test is stopped:

• because the device has automatically detected the end of the expiratory maneuver. See above the

chapter End Of Test Criteria.

device stops the test but it DOES NOT quit from the “test mode” and RESTART AUTOMATICALLY a

new test (no need to call the startTest method to start a new test)

In this case the sequence of the delegate methods called are the following:

flowUpdated

resultsUpdated (which might not be called in case there aren’t the conditions to return the Results)

testRestarted (always called. It means that a new test is started, the user can blow)

This behavior, called AutomaticTestRestarting, has been designed for the Peakflow test where the

patient can perform the 3 tests, recommended for a valid session, without any rest interval because of

the short duration of each maneuver (1 seconds).

Thought the AutomaticTestRestarting approach is recommended, the developer can decide to handle the

Peakflow/Fev1 test using the Start&Stop approach: with this approach the developer should invoke the

stopTest method as soon as the delegate method testRestarted is called and then use the startTest

method to start a new test.

See Best Practices section for more detailed info.

In the Flow Time Monitoring test

when the test is stopped (automatically or not) the device always quits from “test mode“ and a new command

“startTest” needs to be sent to start a new test

the sequence of the delegate methods called during a Flow Time Monitoring test are the following:

flowFT_MonitorUpdated

stopTest (always called, even if the test was stopped by the invocation of the stopTest method)

NO RESULTS ARE SENT WITH THIS KIND OF TEST

In the OXIMETRY test

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 120

When the test is stopped the device always quits from “test mode“ and a new command “startTest” needs to

be sent to start a new test.

The sequence of the delegate methods called during an Oximetry test are the following:

oximetryValuesUpdated

oximetryPlethysmographicValuesUpdated

resultsUpdated

testStopped

In the VC test

When the test is stopped (automatically or not) the device always quits from “test mode” and a new command

“startTest” needs to be sent to start a new test.

The sequence of the Device delegate methods called during a VC test are the following:

volumeUpdated

testStopped (always called, even if the test was stopped by the invocation of the stopTest method)

resultsUpdated (which might not be called in case there aren’t the conditions to return the Results)

Real Time Animation and Quality Report in the FVC test

The Patient class can be instantiated to get some important information during the test to be used to display

the animated feedback of the user’s expiration.

The model of animation proposed by Patient, is based on the concept of the Predicted Area (calculated from

user’s personal data according the specific TestType). Two graphic objects have to move inside the Predicted

Area: One graphic object (target object) is moved by the user’s expired volume with a preset speed (based

on the predicted flow). The other graphic object (user object) is moved according to the user's expired volume

and at the speed of the user’s flow (measured flow)

The method actualPercentageOfTargetWithFlow retrieves the percentage of the Predicted Area which has

been covered by the “user object”.

This percentage value can be asked to Patient for each flow retrieved by the method flowUpdated

The method predictedPercentageOfTargetWithFlow retrieves the percentage of the Predicted “AREA” which

has been covered by the “target object”.

This percentage value can be asked to Patient object for each flow retrieved by the method flowUpdated.

The class Patient also provides information about the acceptability of each single maneuver via the

getQualityReport method, calculated according to the specific TestType mode.

With Spirobank Smart and Spirobank Smart Oxi devices, since firmware version 4.4, the QualityReport

generated by the method is ATS 2019 compliant. It contains a different AcceptabilityStatus for FVC and

FEV1, and a list of QualityReport.Indication. An indication contains both a quality message, and an

AcceptabilityInstruction, to better evaluate the quality of the blow.

With firmwares below v. 4.4, the QualityReport will only contain a AcceptabilityStatus (trialAcceptability), and

a single QualityReport.Indication, as per ATS 2015 guidelines.

Real Time Animation in the Flow Time Monitoring test

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 121

During a Flow Time Monitoring test the Flow Time loop (expired and inspired points) can be plotted.

The method flowFT_MonitorUpdated provide Flow points at a constant time of 10 milliseconds.

The value of flow is an int type that is positive for expiration and negative for expiration. It is provided in cL/s.

Real Time Animation in the Oximetry test

During an Oximetry test the following curves can be plotted:

- the plethysmographic curve, using oximetryPlethysmographicValuesUpdated

- the sPO2 curve and/or the Pulse Rate curve, using

oximetryValuesUpdated

SpO2 range is 70 —> 99

HeartRate range is 30 —> 300

the above method can also be used for displaying other info to the user such as

signal (range 0 to 8)

warnings (OximetryWarnings)

The following values can be assigned to the parameter warning

 NoWarning

 DefectiveSensor

 BatteryLow

 NoFinger

 PulseSearching

 PulseSearchingTooLong

 LossOfPulse

 LowSignalQuality

 LowPerfusion

 ArtifactDetected

CAUTION: when the warning parameter = BatteryLow, the device will stop the test and the delegate method

TestStopped is called.

Session quality grade
To evaluate the quality grade of the whole session, the SDK provides some functions from the

SpirometryInterpretation class.

The functions SpirometryInterpretation. getAts2019SessionQualityGrade and SpirometryInterpretation.

getAts2015SessionQualityGrade both return a GradingReport, which contains:

- ATS standard used

- Quality grade for FVC and FEV1, in case of ATS 2019 standard

- Trial grade, in case of ATS 2015 standard

getAts2019SessionQualityGrade requires, as parameters:

- Age of the patient, expressed as a double (obtainable through the age property of the Patient class)

- Number of acceptable tests for the FVC parameter (obtainable through the fvcAcceptability property of

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 122

the QualityReport class for each test: must be AcceptabilityStatus.ACCEPTABLE to count as an

acceptable test)

- Number of usable trials for the FVC parameter (obtainable through the fvcAcceptability property of the

QualityReport class for each test: must be AcceptabilityStatus.ACCEPTABLE or

AcceptabilityStatus.NOT_ACCEPTABLE_BUT_USABLE to count as a usable test

- Number of acceptable tests for the FEV1 parameter (obtainable through the fev1Acceptability property

of the QualityReport class for each test: must be AcceptabilityStatus.ACCEPTABLE to count as an

acceptable test)

- Number of usable trials for the FEV1 parameter (obtainable through the fev1Acceptability property of

the QualityReport class for each test: must be AcceptabilityStatus.ACCEPTABLE or

AcceptabilityStatus.NOT_ACCEPTABLE_BUT_USABLE to count as a usable test

- Largest and second largest FVC measured value, in liters, for the whole session

- Largest and second largest FEV1 measured value, in liters, for the whole session

getAts2015SessionQualityGrade requires, as parameters:

- Age of the patient, expressed as a double (obtainable through the age property of the Patient class)

- Number of acceptable trials (obtainable through the trialAcceptability property of the QualityReport class

for each test: must be AcceptabilityStatus.ACCEPTABLE to count as an acceptable test)

- Largest and second largest FVC measured value, in liters, for the whole session

- Largest and second largest FEV6 measured value, in liters, for the whole session

Both functions return a GradingReport, which contains the ATS standard used, and:

- In case of ATS 2019 standard, fvcGrade and fev1Grade may contain a value between A and U (will

never be NOT_APPLICABLE), while trialGrade will always be NOT_APPLICABLE

- In case of ATS 2015 standard, fvcGrade and fev1Grade will always be NOT_APPLICABLE, while

trialGrade may contain a value between A and F (will never be NOT_APPLICABLE or U)

Get the FVC curve points at the highest resolution
From SDK version 3.1.5, when connected to a Spirobank smart supporting this feature, you can get the

expired curve points of the last FVC PLUS test performed at the resolution of 100Hz (one point each 10

milliseconds).

Note that the high resolution curve points ARE NOT automatically retrieved with the FvcPlusResults object

passed by the resultsUpdated call back .

To get the high resolution curve points the method GetHighResolutionFvcPlusCurvePoint of the class Device must

be called. It must be called AFTER receiving the resultsUpdated call back.

After the GetHighResolutionFvcPlusCurvePoint is called, the high resolution curve points are provided by the call

back highResolutionFvcPlusCurvePointsUpdated (Device class)

The above callback retrieves a collection of objects HrCurvePoint having has a properties Flow, Volume and

Time.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 123

From SDK version 3.1.7 the GetHighResolutionFvcPlusCurvePointWithInspiration is available that extends the

functionality of the previous method providing in addition also the inspiration part of the curve. The callback

and the object used to provide high resolution points are the same.

Update device internal software

Currently, the firmware update is only available for Spirobank Smart devices with firmware version < 4.0, or Smart One

with firmware version < 4.0:

Device supported Firmware supported

Smart One < 4.0

Spirobank Smart < 4.0

With an instance of connected Device call startSoftwareUpdateProcedure(Context context, byte[]

updateData). UpdateData it’s a bin file provided by MIR. During the update SDK calls

sofwareUpdateProgress callback with the following parameters: progress, status, and error. Progress starts

from 0 to 100, status can be: InProgress, Complete or Error. Parameter error eventually describes what

happened.

The error descriptions can be:

• "Update start timed out" when the time it takes to start the firmware loading procedure exceeds the timeout

• "Communication timed out" when the time it takes to load one of the “packets” (of firmware) exceeds the timeout
this message can also appear after 100% if the firmware doesn’t match the device.

Run the Project
ATTENTION: the projects with the SpirobankSmart SDK Sample embedded can only be compiled and run

in an Android device. Simulator is not supported.

Best Practices
The best practice to handle Mir Spirometer and avoid instability and malfunctioning is the following:

PEAK-FLOW / FEV1 TEST (AutomaticTestRestarting approach)

1. Get an instance of the DeviceManager Class

2. Perform a scan an connect OR perform a “direct connection” to a spirometer

3. Add your PefFev1DeviceCallback listener to your Device instance, via the addDeviceCallback method

4. Start the test (user must start blowing within 15 sec)

testStopped delegate method is called if user doesn’t blow within 15 sec (in this case give to the user

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 124

the ability to restart the test manually)

It is strongly NOT recommended to call the Start test on the testStopped delegate method as a workaround to

contrast the 15 sec timeout effect. If you need to give more time to the user, you can “Customize the End Of Test

Time Out” in “startTest” command.

5. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method testStarted

6. Use flowUpdated delegate method to show the animated feedback (also in connection with the Patient

class’s dedicated methods)

7. Use resultsUpdated to show the result (this method might not be called if the device was not able to

calculate the results)

8. Use testRestarted delegate method to detect that the current expiratory maneuver is ended and advice

the user to start blowing and perform a new expiratory maneuver

9. Repeat from step 4 (3 times at least)

10. send the stopTest command to quit from test and wait for the testStopped delegate method to be

called.

11. Remove your PefFev1DeviceCallback listener via the removeDeviceCallback method of your Device

instance to avoid memory leaks and possible bugs

It is strongly NOT recommended to disconnect the device (DeviceManager disconnect) at the end of each session

or test. The bluetooth disconnection of the device should be called only if no more spirometry tests need to be

performed in a short time (less than 1 minute). Even better is to disconnect when the app became inactive

PEAK-FLOW / FEV1 TEST (Start&Stop approach)

1. Get an instance of the DeviceManager Class

2. Perform a scan an connect OR perform a “direct connection” to a spirometer

3. Add your PefFev1DeviceCallback listener to your Device instance, via the addDeviceCallback method

4. Start the test (user must start blowing within 15 sec)

testStopped delegate method is called if user doesn’t blow within 15 sec (in this case give to the user

the ability to restart the test manually)

It is strongly NOT recommended to call the Start test on the testStopped delegate method as a workaround to

contrast the 15 sec timeout effect. If you need to give more time to the user, you can “Customize the End Of Test

Time Out” in “startTest” command.

5. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method testStarted

6. Use flowUpdated delegate method to show the animated feedback (also in connection with the Patient

class’s dedicated methods)

7. Use resultsUpdated to show the result (this method might not be called if the device was not able to

calculate the results)

8. Use testRestarted delegate method to detect that the current expiratory maneuver is ended and use

the stopTest command to quit from test (then wait for the testStopped delegate method to be called).

9. Repeat from step 3 (3 times at least)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 125

10. Remove your PefFev1DeviceCallback listener via the removeDeviceCallback method of your Device

instance to avoid memory leaks and possible bugs

It is strongly NOT recommended to disconnect the device (DeviceManager disconnect) at the end of each session

or test. The bluetooth disconnection of the device should be called only if no more spirometry tests need to be

performed in a short time (less than 1 minute). Even better is to disconnect when the app became inactive

FVC-FVC PLUS TEST (Spirobank Smart only)

1. Get an instance of the DeviceManager Class

2. Perform a scan an connect OR perform a “direct connection” to a spirometer

3. Add your FvcDeviceCallback listener to your Device instance, via the addDeviceCallback method

4. Start the test (user must start blowing within 15 sec)

testStopped delegate method is called if user does not blow within 15 sec (give to the user the ability

to restart test manually)

It is strongly NOT recommended to call the Start test on the testStopped delegate method as a workaround to

contrast the 15 sec timeout effect. If you need to give more time to the user, you can “Customize the End Of Test

Time Out” in “startTest” command.

5. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method testStarted

6. Use flowUpdated delegate method to show the animated feedback (also in connection with the

SOPatient class’s dedicated methods)

7. If the receivedEndOfForcedExpirationIndicator delegate method is called, the user can be advised to

stop blowing, since a plateau or the end of expiratory time was reached

8. Use resultsUpdated to show the result (this method might not be called if the device was not able to

calculate the results)

9. testStopped delegate method is called: the test is over

10. Remove your FvcDeviceCallback listener via the removeDeviceCallback method of your Device

instance to avoid memory leaks and possible bugs

It is strongly NOT recommended to disconnect the device (DeviceManager disconnect) at the end of each session

or test. The bluetooth disconnection of the device should be called only if no more spirometry tests need to be

performed in a short time (less than 1 minute). Even better is to disconnect when the app became inactive

VC TEST (Spirobank Smart only from firmware version 4.4+)

1. Get an instance of the DeviceManager Class

2. Perform a scan an connect OR perform a “direct connection” to a spirometer

3. Add your VcDeviceCallback listener to your Device instance, via the addDeviceCallback method

4. Start the test (user must start blowing within 15 sec)

testStopped delegate method is called if user does not blow within 15 sec (give to the user the ability

to restart test manually)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 126

It is strongly NOT recommended to call the Start test on the testStopped delegate method as a workaround to

contrast the 15 sec timeout effect. If you need to give more time to the user, you can “Customize the End Of Test

Time Out” in “startTest” command.

5. Use a visual feedback to prevent that user start blowing before the app has received the delegate

method testStarted

6. Use volumeUpdated delegate method to show the animated feedback

7. When the ventilatoryProfilePerformed callback is called, patient’s ventilatory profile is acquired

8. Use resultsUpdated to show the result (this method might not be called if the device was not able to

calculate the results)

9. testStopped delegate method is called: the test is over

10. Remove your VcDeviceCallback listener via the removeDeviceCallback method of your Device

instance to avoid memory leaks and possible bugs

It is strongly NOT recommended to disconnect the device (DeviceManager disconnect) at the end of each session

or test. The bluetooth disconnection of the device should be called only if no more spirometry tests need to be

performed in a short time (less than 1 minute). Even better is to disconnect when the app became inactive

End Of Test Criteria
During a spirometry maneuver the End of Test is detected by the spirometer (and thus propagated by the

SDK) according to the following criteria:

FVC TEST

The FVC maneuver AUTOMATICALLY ends:

1. when an expiratory PLATEAU has been reached. The expiratory plateau is detected, by the

spirobankSmart, when no significant volumes (< 20mL) have been measured within a timeframe

of 3 seconds

2. when a significant inhaled volume is detected AND an exhalation has been performed.

3. when a timeout is expired

a. when the user has not blown at all for 15-120 (according to the endOfTestTimeout_sec

parameter passed to the “startTest” command) seconds since the test was started

b. when the user stops blowing for 3 sec

c. when the user keeps on blowing for 60 seconds and no plateau has been reached

According to ATS/ERS guidelines, to have an acceptable FVC maneuver, the exhalation must last no less than 6

seconds (3 in case of child) but it is also acceptable a maneuver that lasts less than 6 seconds (or 3) if it meets the

criteria 1 (an expiratory plateau has been reached)

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 127

FVC PLUS TEST

Since the FVC PLUS test is a multiloop test, there are no conditions for it to end automatically, apart from

timeouts:

a. when the user has not blown at all for 15-120 (according to the EndOfTestTimeOut parameter

passed to the “startTest” command) seconds since the test was started

b. when the user stops blowing for 3 sec

c. when the user keeps on blowing for 60 seconds and no plateau has been reached

PEAKFLOW/FEV1 test

The PEAKFLOW/FEV1 maneuver AUTOMATICALLY ends:

1. when the device detects a volume < 200mL AND a flow < 300mL/s within a timeframe of 2

seconds (here the test is AUTOMATICALLY RESTARTED)

2. when a significant inhaled volume is detected (here the test is AUTOMATICALLY RESTARTED)

3. when a timeout is expired

a. when the user has never been blowing for 15-120 (according to the EndOfTestTimeOut

parameter passed to the “startTest” command) seconds since the test was started

b. when the user stop blowing for 3 sec (here the test is AUTOMATICALLY RESTARTED)

c. when the user keeps on blowing for 60 seconds AND none of the previous condition has

been met

To have an acceptable PEAKFLOW/FEV1 maneuver, the exhalation must last no less than 1 seconds

VC TEST

The VC test:

a. when the user has not blown at all for 15-120 (according to the EndOfTestTimeOut parameter

passed to the “startTest” command) seconds since the test was started

b. when the user stops blowing for 3 sec

Sample Demo Application

The archive contains a subfolder named " SpirobankSmartSDKSample".

This folder contains an Android studio project.

To use it, open Android Studio and follow the instructions below:

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 128

a) On the main screen, select “More Actions” and select “Import Project (Gradle, Eclipse ADT, etc.)

b) Select the “SpirobankSmartSDKSample” directory which should be symbolized with the Android icon.

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 129

c) Build the App and start it on a device.

The App allows you to scan the MIR Bluetooth Low Energy devices and to perform different types of tests:

Additional Resources

- MIR Website: https://www.spirometry.com

https://www.spirometry.com/

IFU

MIR SUPER SDK

Rev 01

2024.02.09

MDR_IFU_MIR SUPER SDK.rev01 130

Troubleshooting

1. Could not find method compile() for arguments Gradle

Solution: compile method has been deprecated and removed in Gradle 7.0.

Open the file build.gradle and replace compile by implementation and testCompile by testImplementation.

2. Error: Could not initialize class com.android.sdklib.repository.AndroidSdkHandler

Solution: Make sure your build.gradle file is using Gradle 7.0+:

dependencies {
 classpath 'com.android.tools.build:gradle:7.0.0'
}

3. Gradle Sync Failed: No installed build tools found. Install the Android build tools version 19.1.0 or higher.

Solution: Install or update the Android Build Tools via the SDK Manager in Android Studio.

4. Error: JAVA_HOME is not set and no 'java' command could be found in your PATH.

Solution: Ensure the JDK is installed and set the `JAVA_HOME` environment variable to point to the JDK installation

directory.

5. Unable to start the daemon process: could not reserve enough space for object heap.

Solution: Increase the memory allocated to Gradle by modifying or adding the line `org.gradle.jvmargs=-Xmx2048m` in

the `gradle.properties` file.

6. INSTALL_FAILED_VERSION_DOWNGRADE

Solution: uninstall the existing application from the device or emulator and try installing again.

7. Emulator: PANIC: Missing emulator engine program for 'x86' CPU.

 Solution: Ensure the necessary Android Emulator components are properly installed via the SDK Manager.

8. AAPT2 error: check logs for details.

 Solution: Check the logs for specific errors. Often, this is due to issues in resource files, such as misnamed images or

errors in XML files.

9. Failed to resolve: com.android.support:appcompat-v7:26.1.0

 Solution: Ensure the correct repositories are added in the `build.gradle` file and that the library version is available.

